A089702 a(1) = 2 then primes in nondecreasing order such that every concatenation is prime.
2, 3, 3, 3, 3, 23, 43, 59, 67, 83, 199, 239, 421, 569, 613, 1307, 2017, 2129, 2467, 2741, 2953, 3011, 3319, 3413, 3607, 3617, 5449, 6917, 7333, 7529, 8389, 10211, 10357, 12641, 12703, 15077, 17107, 21341, 21799, 22469, 32911, 33587, 33613, 33647
Offset: 0
Examples
2,23,233,2333,23333,2333323 etc. are primes.
Crossrefs
Cf. A089703.
Programs
-
Maple
ds:=proc(s) local j: RETURN(add(s[j]*10^(j-1),j=1..nops(s))):end: a:=[2]: k:=1: for n from 1 to 50 do l:=nops(a): for i from k do p:=ithprime(i): if isprime(ds([op(convert(p,base,10)),seq(op(convert(a[l-j],base,10)),j=0..l-1)])) then a:=[op(a),p]: k:=i: break fi od od: op(a); # C. Ronaldo
Extensions
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 25 2004
Comments