cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089775 Lucas numbers L(12n).

Original entry on oeis.org

2, 322, 103682, 33385282, 10749957122, 3461452808002, 1114577054219522, 358890350005878082, 115561578124838522882, 37210469265847998489922, 11981655542024930675232002, 3858055874062761829426214722, 1242282009792667284144565908482, 400010949097364802732720796316482
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 09 2004

Keywords

Comments

a(n+1)/a(n) converges to (322 + sqrt(103680))/2 = 321.996894379... a(0)/a(1) = 2/322; a(1)/a(2) = 322/103682; a(2)/a(3) = 103682/33385282; a(3)/a(4) = 33385282/10749957122; etc. Lim_{n -> inf} a(n)/a(n+1) = 0.00310562... = 2/(322 + sqrt(103680)) = (322 - sqrt(103680))/2.

Examples

			a(4) = 10749957122 = 322*a(3) - a(2) = 322*33385282 - 103682 = ((322 + sqrt(103680))/2)^4 + ((322 - sqrt(103680))/2)^4.
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.

Crossrefs

a(n) = A000032(12n).
Row 9 * 2 of array A188644
Cf. Lucas(k*n): A005248 (k = 2), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11).

Programs

  • Magma
    [ Lucas(12*n) : n in [0..70]]; // Vincenzo Librandi, Apr 15 2011
    
  • Mathematica
    Table[LucasL[12n], {n, 0, 13}] (* Indranil Ghosh, Mar 15 2017 *)
  • PARI
    Vec((2 - 322*x)/(1 - 322*x + x^2) + O(x^14)) \\ Indranil Ghosh, Mar 15 2017

Formula

a(n) = 322*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 322
a(n) = ((322 + sqrt(103680))/2)^n + ((322 - sqrt(103680))/2)^n.
(a(n))^2 = a(2n) + 2.
G.f.: (2-322*x)/(1-322*x+x^2). - Philippe Deléham, Nov 02 2008
From Peter Bala, Apr 16 2025: (Start)
a(n) = Lucas(2*n)^6 - 6*Lucas(2*n)^4 + 9*Lucas(2*n)^2 - 2 = 2*T(6, (1/2)*Lucas(2*n)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind.
320*Sum_{n >= 1} 1/(a(n) - 324/a(n)) = 1: (324 = Lucas(12) + 2 and 320 = Lucas(12) - 2)
324*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 320/a(n)) = 1.
Sum_{n >= 1} 1/a(n) = (1/4) * (theta_3( (322 - sqrt(103680))/2 )^2 - 1) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4) * (1 - theta_3( (sqrt(103680) - 322)/2 )^2),
where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). See Borwein and Borwein, Proposition 3.5 (i), p. 91. (End)

Extensions

a(11) - a(13) from Vincenzo Librandi, Apr 15 2011