cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A089787 a(4n-3), a(4n-2), a(4n-1), and a(4n) are the units digit of the n-th prime followed by 1, 3, 7, and 9 respectively.

Original entry on oeis.org

21, 23, 27, 29, 31, 33, 37, 39, 51, 53, 57, 59, 71, 73, 77, 79, 11, 13, 17, 19, 31, 33, 37, 39, 71, 73, 77, 79, 91, 93, 97, 99, 31, 33, 37, 39, 91, 93, 97, 99, 11, 13, 17, 19, 71, 73, 77, 79, 11, 13, 17, 19, 31, 33, 37, 39, 71, 73, 77, 79, 31, 33, 37, 39, 91, 93, 97, 99, 11
Offset: 1

Views

Author

Roger L. Bagula, Jan 09 2004

Keywords

Crossrefs

Cf. A089784 (essentially the same).

Programs

  • Mathematica
    Flatten[Table[Mod[Prime[n], 10]*10+{1, 3, 7, 9}, {n, 1, 50}]]
    a[n_] := Mod[Prime[Floor[(n + 3)/4]], 10]*10 + {1, 3, 7,
    9}[[Mod[n - 1, 4] + 1]] (* Charles R Greathouse IV, Jan 02 2013 *)
    Table[10*Mod[Prime[n],10]+{1,3,7,9},{n,30}]//Flatten (* Harvey P. Dale, Aug 24 2019 *)
  • PARI
    a(n)=prime((n+3)\4)%10*10+[9,1,3,7][n%4+1] \\ Charles R Greathouse IV, Jan 02 2013

Formula

a(n) = 5+(-1)^n+3*cos(n*Pi/2)-3*sin(n*Pi/2)+10*(prime(floor((n+3)/4)) mod 10). - Wesley Ivan Hurt, May 06 2021

A089786 Primes of the form prime(2k) followed by prime(k).

Original entry on oeis.org

73, 197, 7129, 10141, 15161, 19379, 271109, 373157, 593251, 757331, 983431, 997433, 1069463, 1231547, 1361599, 1531661, 1571683, 1627727, 1831811, 2069911, 2161967, 2213977, 24731093, 25311103, 26931193, 27131213, 27911237, 28191259
Offset: 1

Views

Author

Amarnath Murthy, Nov 24 2003

Keywords

Examples

			10141 is a term as a concatenation of prime(26)=101 followed by prime(13)=41.
		

Crossrefs

Programs

  • Maple
    a:=proc(k) local s,m: s:= [op(convert(ithprime(k),base,10)),op(convert(ithprime(2*k),base,10))]: m:=add(s[j]*10^(j-1),j=1..nops(s)): if not isprime(m) then RETURN(NULL) else RETURN(m) fi: end; seq(a(k),k=1..250); (C. Ronaldo)
  • Mathematica
    Select[Table[FromDigits[Flatten[IntegerDigits/@{Prime[2n],Prime[n]}]],{n,250}],PrimeQ] (* Harvey P. Dale, Nov 17 2014 *)

Extensions

Corrected and extended by C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 25 2004

A089788 Primes of the form prime(nk) followed by prime(k).

Original entry on oeis.org

73, 6113, 193, 293, 373, 433, 26317, 613, 94153, 38917, 2237, 1013, 43313, 76123, 82723, 76919, 70117, 169943, 1733, 4337, 1933, 1993, 421189, 2293, 2393, 195131, 2633, 2713, 86311, 510179, 94111, 97711, 3373, 129113, 3593, 3733, 3833, 268729
Offset: 1

Views

Author

Amarnath Murthy, Nov 24 2003

Keywords

Crossrefs

Programs

  • Mathematica
    c[r_, s_] := ToExpression[ToString[r] <> ToString[s]]; Do[k = 1; While[ !PrimeQ[c[Prime[n*k], Prime[k]]], k++ ]; Print[c[Prime[n*k], Prime[k]]], {n, 2, 100}] (* Ryan Propper, Sep 14 2005 *)

Extensions

More terms from Ryan Propper, Sep 14 2005
Showing 1-3 of 3 results.