cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089800 Expansion of Jacobi theta function theta_2(q)/q^(1/4).

Original entry on oeis.org

2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Eric W. Weisstein, Nov 12 2003

Keywords

Programs

  • Magma
    [2*(Floor(Sqrt(n+1)+1/2) - Floor(Sqrt(n)+1/2)): n in [0..50]]; // G. C. Greubel, Nov 20 2017
  • Maple
    A089800 := proc(n)
        if issqr(1+4*n) then
            if type( sqrt(1+4*n)-1,'even') then
                2;
            else
                0;
            end if;
        else
            0;
        end if;
    end proc:
    seq( A089800(n),n=0..40) ; # R. J. Mathar, Feb 22 2021
  • Mathematica
    a[n_] := SeriesCoefficient[ EllipticTheta[2, 0, q]/q^(1/4), {q, 0, n}]; Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Nov 12 2012 *)
    Table[2*(Floor[Sqrt[n+1]+1/2] - Floor[Sqrt[n]+1/2]), {n,0,50}] (* G. C. Greubel, Nov 20 2017 *)
  • PARI
    for(n=0,50, print1(2*(floor(sqrt(n+1)+1/2) - floor(sqrt(n)+1/2)), ", ")) \\ G. C. Greubel, Nov 20 2017
    

Formula

For n > 0, a(n) = 2*(floor(sqrt(n+1/4)-1/2) - floor(sqrt(n-1+1/4)-1/2)). - Mikael Aaltonen, Jan 18 2015
a(n) = 2*(floor(sqrt(n+1)+1/2)-floor(sqrt(n)+1/2)). - Mikael Aaltonen, Jan 20 2015
a(n) = 2*A005369(n). - Michel Marcus, Jan 20 2015