A089800 Expansion of Jacobi theta function theta_2(q)/q^(1/4).
2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions
- I. J. Zucker, Further Relations Amongst Infinite Series and Products. II. The Evaluation of Three-Dimensional Lattice Sums, J. Phys. A: Math. Gen. 23, 117-132, 1990.
Programs
-
Magma
[2*(Floor(Sqrt(n+1)+1/2) - Floor(Sqrt(n)+1/2)): n in [0..50]]; // G. C. Greubel, Nov 20 2017
-
Maple
A089800 := proc(n) if issqr(1+4*n) then if type( sqrt(1+4*n)-1,'even') then 2; else 0; end if; else 0; end if; end proc: seq( A089800(n),n=0..40) ; # R. J. Mathar, Feb 22 2021
-
Mathematica
a[n_] := SeriesCoefficient[ EllipticTheta[2, 0, q]/q^(1/4), {q, 0, n}]; Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Nov 12 2012 *) Table[2*(Floor[Sqrt[n+1]+1/2] - Floor[Sqrt[n]+1/2]), {n,0,50}] (* G. C. Greubel, Nov 20 2017 *)
-
PARI
for(n=0,50, print1(2*(floor(sqrt(n+1)+1/2) - floor(sqrt(n)+1/2)), ", ")) \\ G. C. Greubel, Nov 20 2017
Formula
For n > 0, a(n) = 2*(floor(sqrt(n+1/4)-1/2) - floor(sqrt(n-1+1/4)-1/2)). - Mikael Aaltonen, Jan 18 2015
a(n) = 2*(floor(sqrt(n+1)+1/2)-floor(sqrt(n)+1/2)). - Mikael Aaltonen, Jan 20 2015
a(n) = 2*A005369(n). - Michel Marcus, Jan 20 2015