A089821 Number of subsets of {1,.., n} containing exactly one prime.
0, 2, 4, 8, 12, 24, 32, 64, 128, 256, 320, 640, 768, 1536, 3072, 6144, 7168, 14336, 16384, 32768, 65536, 131072, 147456, 294912, 589824, 1179648, 2359296, 4718592, 5242880, 10485760, 11534336, 23068672, 46137344, 92274688, 184549376, 369098752, 402653184
Offset: 1
Keywords
Examples
a(5)=12 subsets of {1,2,3,4,5} contain exactly one prime: {2}, {3}, {5}, {1,2}, {1,3}, {1,5}, {2,4}, {3,4}, {4,5}, {1,2,4}, {1,3,4} and {1,4,5}.
Programs
-
Maple
b:= proc(n, c) option remember; `if`(n=0, `if`(c=0, 1, 0), `if`(c<0, 0, b(n-1, c)+b(n-1, c-`if`(isprime(n), 1, 0)))) end: a:= n-> b(n, 1): seq(a(n), n=1..42); # Alois P. Heinz, Dec 19 2019
-
Mathematica
b[n_, c_] := b[n, c] = If[n == 0, If[c == 0, 1, 0], If[c < 0, 0, b[n - 1, c] + b[n - 1, c - If[PrimeQ[n], 1, 0]]]]; a[n_] := b[n, 1]; Array[a, 42] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
-
PARI
a(n) = primepi(n) * 2^(n-primepi(n)); \\ Michel Marcus, Nov 07 2020