cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089821 Number of subsets of {1,.., n} containing exactly one prime.

Original entry on oeis.org

0, 2, 4, 8, 12, 24, 32, 64, 128, 256, 320, 640, 768, 1536, 3072, 6144, 7168, 14336, 16384, 32768, 65536, 131072, 147456, 294912, 589824, 1179648, 2359296, 4718592, 5242880, 10485760, 11534336, 23068672, 46137344, 92274688, 184549376, 369098752, 402653184
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 12 2003

Keywords

Examples

			a(5)=12 subsets of {1,2,3,4,5} contain exactly one prime: {2}, {3}, {5}, {1,2}, {1,3}, {1,5}, {2,4}, {3,4}, {4,5}, {1,2,4}, {1,3,4} and {1,4,5}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, c) option remember; `if`(n=0, `if`(c=0, 1, 0),
         `if`(c<0, 0, b(n-1, c)+b(n-1, c-`if`(isprime(n), 1, 0))))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=1..42);  # Alois P. Heinz, Dec 19 2019
  • Mathematica
    b[n_, c_] := b[n, c] = If[n == 0, If[c == 0, 1, 0], If[c < 0, 0, b[n - 1, c] + b[n - 1, c - If[PrimeQ[n], 1, 0]]]];
    a[n_] := b[n, 1];
    Array[a, 42] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
  • PARI
    a(n) = primepi(n) * 2^(n-primepi(n)); \\ Michel Marcus, Nov 07 2020

Formula

a(n) = A000720(n)*A089819(n);
for n>1: a(n) = A089818(n,1).
a(n) = pi(n) * 2^(n-pi(n)), with pi = A000720.