A089824 Primes p such that the next prime after p can be obtained from p by adding the sum of the digits of p.
11, 13, 101, 103, 181, 293, 631, 701, 811, 1153, 1171, 1409, 1801, 1933, 2017, 2039, 2053, 2143, 2213, 2521, 2633, 3041, 3089, 3221, 3373, 3391, 3469, 3643, 3739, 4057, 4231, 5153, 5281, 5333, 5449, 5623, 5717, 6053, 6121, 6301, 7043, 7333, 8101, 8543, 9241
Offset: 1
Examples
13 + sum of digits of 13 = 17, which is the next prime after 13. Hence 13 belongs to the sequence.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= proc(n) option remember; local p, q; p:= a(n-1); q:= nextprime(p); do p:= q; q:= nextprime(p); if add(i, i=convert(p, base, 10))=q-p then break fi od; p end: a(1):= 11: seq(a(n), n=1..50); # Alois P. Heinz, Nov 18 2017
-
Mathematica
r = {}; Do[p = Prime[i]; q = Prime[i + 1]; If[p + Apply[Plus, IntegerDigits[p]] == q, r = Append[r, p]], {i, 1, 10^6}]; r Transpose[Select[Partition[Prime[Range[1000]],2,1],#[[2]]==#[[1]]+Total[ IntegerDigits[ #[[1]]]]&]][[1]] (* Harvey P. Dale, Apr 20 2013 *)
-
Python
from sympy import isprime, nextprime def ok(n): return isprime(n) and sum(map(int, str(n))) + n == nextprime(n) print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Dec 07 2024
Comments