A089105
Values taken by least witness function W(n).
Original entry on oeis.org
2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26
Offset: 1
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 157 (pp. 168f in the 2nd edition).
A006945
Smallest odd composite number that requires n Miller-Rabin primality tests.
Original entry on oeis.org
9, 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 341550071728321, 3825123056546413051, 3825123056546413051, 3825123056546413051, 318665857834031151167461, 3317044064679887385961981
Offset: 1
2047=23*89. 1373653 = 829*1657. 25326001 = 11251*2251. 3215031751 = 151*751*28351. 2152302898747 = 6763*10627*29947.
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 157.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 98.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Joerg Arndt, Matters Computational (The Fxtbook)
- Eric Bach, Explicit bounds for primality testing and related problems, Mathematics of Computation 55 (1990), pp. 355-380.
- G. Jaeschke, On strong pseudoprimes to several bases, Math. Comp., 61 (1993), 915-926.
- Yupeng Jiang, Yingpu Deng, Strong pseudoprimes to the first 9 prime bases, arXiv:1207.0063v1 [math.NT], June 30, 2012.
- C. Pomerance, J. L. Selfridge and S. S. Wagstaff, Jr., The pseudoprimes to 25.10^9, Mathematics of Computation 35 (1980), pp. 1003-1026.
- S. Wagon, Primality testing, Math. Intellig., 8 (No. 3, 1986), 58-61.
- Zhenxiang Zhang and Min Tang, Finding strong pseudoprimes to several bases. II, Mathematics of Computation 72 (2003), pp. 2085-2097.
- Index entries for sequences related to pseudoprimes
Extended and description corrected by
Jud McCranie Feb 15 1997.
Showing 1-2 of 2 results.
Comments