A089898 Product of (digits of n each incremented by 1).
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 8, 16, 24, 32, 40, 48, 56, 64
Offset: 0
Examples
a(12)=6 since (1+1)*(2+1)=2*3=6 and since (1*2)+(1)+(2)+(1)=2+1+2+1=6 and since the lunar sum of 12 with any of the six values {0,1,2,10,11,12} is 12.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, arXiv:1107.1130 [math.NT], 2011. [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
Programs
-
Haskell
a089898 n = if n < 10 then n + 1 else (d + 1) * a089898 n' where (n', d) = divMod n 10 -- Reinhard Zumkeller, Jul 06 2014
-
Maple
seq(convert(map(`+`,convert(n,base,10),1),`*`), n = 0 .. 1000); # Robert Israel, Nov 17 2014
-
Mathematica
a089898[n_Integer] := Prepend[Array[Times @@ (IntegerDigits[#] + 1) &, n], 1]; a089898[77] (* Michael De Vlieger, Dec 22 2014 *)
-
PARI
a(n) = my(d=digits(n)); prod(i=1, #d, d[i]+1); \\ Michel Marcus, Apr 06 2014
-
PARI
a(n) = vecprod(apply(x->x+1, digits(n))); \\ Michel Marcus, Feb 01 2023
Formula
a(n) = a(floor(n/10))*(1+(n mod 10)). - Robert Israel, Nov 17 2014
G.f. g(x) satisfies g(x) = (10*x^11 - 11*x^10 + 1)*g(x^10)/(x-1)^2. - Robert Israel, Nov 17 2014
Comments