cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A374448 Irregular table T(n, k), n >= 0, 0 <= k < A089898(n), read by rows; the n-th row lists the numbers m in the range 0..n such that m and n-m can be added without carries in base 10.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 10, 0, 1, 10, 11, 0, 1, 2, 10, 11, 12, 0, 1, 2, 3, 10, 11, 12, 13, 0, 1, 2, 3, 4, 10, 11, 12, 13, 14
Offset: 0

Views

Author

Rémy Sigrist, Jul 08 2024

Keywords

Comments

The n-th row lists the numbers m such that for any k > 0, the k-th rightmost digit of m is <= the k-th rightmost digit of n.

Examples

			Table T(n, k) begins:
  n   n-th row
  --  ---------------------------------
   0  0
   1  0, 1
   2  0, 1, 2
   3  0, 1, 2, 3
   4  0, 1, 2, 3, 4
   5  0, 1, 2, 3, 4, 5
   6  0, 1, 2, 3, 4, 5, 6
   7  0, 1, 2, 3, 4, 5, 6, 7
   8  0, 1, 2, 3, 4, 5, 6, 7, 8
   9  0, 1, 2, 3, 4, 5, 6, 7, 8, 9
  10  0, 10
  11  0, 1, 10, 11
  12  0, 1, 2, 10, 11, 12
  13  0, 1, 2, 3, 10, 11, 12, 13
  14  0, 1, 2, 3, 4, 10, 11, 12, 13, 14
		

Crossrefs

Cf. A002262, A089898, A295989 (base-2 analog).

Programs

  • PARI
    T(n, k, base = 10) = { my (v = 0, p = 1, d, t); while (n, d = n % base; n \= base; t = k % (d+1); k \= (d+1); v += t * p; p *= base;); return (v); }

Formula

T(n, 0) = 0.
T(n, A089898(n)-1) = n.
T(n, k) + T(n, A089898(n)-1-k) = n.
T(10*n, k) = 10*T(n, k).

A001316 Gould's sequence: a(n) = Sum_{k=0..n} (binomial(n,k) mod 2); number of odd entries in row n of Pascal's triangle (A007318); a(n) = 2^A000120(n).

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 4, 8, 8, 16, 8, 16, 16, 32, 8, 16, 16, 32, 16, 32, 32, 64, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 4, 8, 8, 16, 8, 16, 16, 32
Offset: 0

Views

Author

Keywords

Comments

Also called Dress's sequence.
This sequence might be better called Glaisher's sequence, since James Glaisher showed that odd binomial coefficients are counted by 2^A000120(n) in 1899. - Eric Rowland, Mar 17 2017 [However, the name "Gould's sequence" is deeply entrenched in the literature. - N. J. A. Sloane, Mar 17 2017] [Named after the American mathematician Henry Wadsworth Gould (b. 1928). - Amiram Eldar, Jun 19 2021]
All terms are powers of 2. The first occurrence of 2^k is at n = 2^k - 1; e.g., the first occurrence of 16 is at n = 15. - Robert G. Wilson v, Dec 06 2000
a(n) is the highest power of 2 dividing binomial(2n,n) = A000984(n). - Benoit Cloitre, Jan 23 2002
Also number of 1's in n-th row of triangle in A070886. - Hans Havermann, May 26 2002. Equivalently, number of live cells in generation n of a one-dimensional cellular automaton, Rule 90, starting with a single live cell. - Ben Branman, Feb 28 2009. Ditto for Rule 18. - N. J. A. Sloane, Aug 09 2014. This is also the odd-rule cellular automaton defined by OddRule 003 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link). - N. J. A. Sloane, Feb 25 2015
Also number of numbers k, 0<=k<=n, such that (k OR n) = n (bitwise logical OR): a(n) = #{k : T(n,k)=n, 0<=k<=n}, where T is defined as in A080098. - Reinhard Zumkeller, Jan 28 2003
To construct the sequence, start with 1 and use the rule: If k >= 0 and a(0),a(1),...,a(2^k-1) are the first 2^k terms, then the next 2^k terms are 2*a(0),2*a(1),...,2*a(2^k-1). - Benoit Cloitre, Jan 30 2003
Also, numerator((2^k)/k!). - Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Mar 03 2004
The odd entries in Pascal's triangle form the Sierpiński Gasket (a fractal). - Amarnath Murthy, Nov 20 2004
Row sums of Sierpiński's Gasket A047999. - Johannes W. Meijer, Jun 05 2011
Fixed point of the morphism "1" -> "1,2", "2" -> "2,4", "4" -> "4,8", ..., "2^k" -> "2^k,2^(k+1)", ... starting with a(0) = 1; 1 -> 12 -> 1224 -> = 12242448 -> 122424482448488(16) -> ... . - Philippe Deléham, Jun 18 2005
a(n) = number of 1's of stage n of the one-dimensional cellular automaton with Rule 90. - Andras Erszegi (erszegi.andras(AT)chello.hu), Apr 01 2006
a(33)..a(63) = A117973(1)..A117973(31). - Stephen Crowley, Mar 21 2007
Or the number of solutions of the equation: A000120(x) + A000120(n-x) = A000120(n). - Vladimir Shevelev, Jul 19 2009
For positive n, a(n) equals the denominator of the permanent of the n X n matrix consisting entirely of (1/2)'s. - John M. Campbell, May 26 2011
Companions to A001316 are A048896, A105321, A117973, A151930 and A191488. They all have the same structure. We observe that for all these sequences a((2*n+1)*2^p-1) = C(p)*A001316(n), p >= 0. If C(p) = 2^p then a(n) = A001316(n), if C(p) = 1 then a(n) = A048896(n), if C(p) = 2^p+2 then a(n) = A105321(n+1), if C(p) = 2^(p+1) then a(n) = A117973(n), if C(p) = 2^p-2 then a(n) = (-1)*A151930(n) and if C(p) = 2^(p+1)+2 then a(n) = A191488(n). Furthermore for all a(2^p - 1) = C(p). - Johannes W. Meijer, Jun 05 2011
a(n) = number of zeros in n-th row of A219463 = number of ones in n-th row of A047999. - Reinhard Zumkeller, Nov 30 2012
This is the Run Length Transform of S(n) = {1,2,4,8,16,...} (cf. A000079). The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g., 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product). - N. J. A. Sloane, Sep 05 2014
A105321(n+1) = a(n+1) + a(n). - Reinhard Zumkeller, Nov 14 2014
a(n) = A261363(n,n) = number of distinct terms in row n of A261363 = number of odd terms in row n+1 of A261363. - Reinhard Zumkeller, Aug 16 2015
From Gary W. Adamson, Aug 26 2016: (Start)
A production matrix for the sequence is lim_{k->infinity} M^k, the left-shifted vector of M:
1, 0, 0, 0, 0, ...
2, 0, 0, 0, 0, ...
0, 1, 0, 0, 0, ...
0, 2, 0, 0, 0, ...
0, 0, 1, 0, 0, ...
0, 0, 2, 0, 0, ...
0, 0, 0, 1, 0, ...
...
The result is equivalent to the g.f. of Apr 06 2003: Product_{k>=0} (1 + 2*z^(2^k)). (End)
Number of binary palindromes of length n for which the first floor(n/2) symbols are themselves a palindrome (Ji and Wilf 2008). - Jeffrey Shallit, Jun 15 2017

Examples

			Has a natural structure as a triangle:
  1,
  2,
  2,4,
  2,4,4,8,
  2,4,4,8,4,8,8,16,
  2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32,
  2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32,4,8,8,16,8,16,16,32,8,16,16,32,16,32,32,64,
  ...
The rows converge to A117973.
From _Omar E. Pol_, Jun 07 2009: (Start)
Also, triangle begins:
   1;
   2,2;
   4,2,4,4;
   8,2,4,4,8,4,8,8;
  16,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16;
  32,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32,4,8,8,16,8,16,16,32,8,16,16,32,16,32,32;
  64,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32,4,8,8,16,8,16,16,32,8,16,16,32,16,32,...
(End)
G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 2*x^4 + 4*x^5 + 4*x^6 + 8*x^7 + 2*x^8 + ... - _Michael Somos_, Aug 26 2015
		

References

  • Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, p. 75ff.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 145-151.
  • James W. L. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quarterly Journal of Pure and Applied Mathematics, Vol. 30 (1899), pp. 150-156.
  • H. W. Gould, Exponential Binomial Coefficient Series. Tech. Rep. 4, Math. Dept., West Virginia Univ., Morgantown, WV, Sep 1961.
  • Olivier Martin, Andrew M. Odlyzko, and Stephen Wolfram, Algebraic properties of cellular automata, Comm. Math. Physics, Vol. 93 (1984), pp. 219-258. Reprinted in Theory and Applications of Cellular Automata, S Wolfram, Ed., World Scientific, 1986, pp. 51-90 and in Cellular Automata and Complexity: Collected Papers of Stephen Wolfram, Addison-Wesley, 1994, pp. 71-113
  • Manfred R. Schroeder, Fractals, Chaos, Power Laws, W. H. Freeman, NY, 1991, page 383.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Andrew Wuensche, Exploring Discrete Dynamics, Luniver Press, 2011. See Fig. 2.3.

Crossrefs

Equals left border of triangle A166548. - Gary W. Adamson, Oct 16 2009
For generating functions Product_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
For partial sums see A006046. For first differences see A151930.
This is the numerator of 2^n/n!, while A049606 gives the denominator.
If we subtract 1 from the terms we get a pair of essentially identical sequences, A038573 and A159913.
A163000 and A163577 count binomial coefficients with 2-adic valuation 1 and 2. A275012 gives a measure of complexity of these sequences. - Eric Rowland, Mar 15 2017
Cf. A286575 (run-length transform), A368655 (binomial transform), also A037445.

Programs

  • Haskell
    import Data.List (transpose)
    a001316 = sum . a047999_row  -- Reinhard Zumkeller, Nov 24 2012
    a001316_list = 1 : zs where
       zs = 2 : (concat $ transpose [zs, map (* 2) zs])
    -- Reinhard Zumkeller, Aug 27 2014, Sep 16 2011
    (Sage, Python)
    from functools import cache
    @cache
    def A001316(n):
        if n <= 1: return n+1
        return A001316(n//2) << n%2
    print([A001316(n) for n in range(88)])  # Peter Luschny, Nov 19 2012
    
  • Maple
    A001316 := proc(n) local k; add(binomial(n,k) mod 2, k=0..n); end;
    S:=[1]; S:=[op(S),op(2*s)]; # repeat ad infinitum!
    a := n -> 2^add(i,i=convert(n,base,2)); # Peter Luschny, Mar 11 2009
  • Mathematica
    Table[ Sum[ Mod[ Binomial[n, k], 2], {k, 0, n} ], {n, 0, 100} ]
    Nest[ Join[#, 2#] &, {1}, 7] (* Robert G. Wilson v, Jan 24 2006 and modified Jul 27 2014 *)
    Map[Function[Apply[Plus,Flatten[ #1]]], CellularAutomaton[90,{{1},0},100]] (* Produces counts of ON cells. N. J. A. Sloane, Aug 10 2009 *)
    ArrayPlot[CellularAutomaton[90, {{1}, 0}, 20]] (* Illustration of first 20 generations. - N. J. A. Sloane, Aug 14 2014 *)
    Table[2^(RealDigits[n - 1, 2][[1]] // Total), {n, 1, 100}] (* Gabriel C. Benamy, Dec 08 2009 *)
    CoefficientList[Series[Exp[2*x], {x, 0, 100}], x] // Numerator (* Jean-François Alcover, Oct 25 2013 *)
    Count[#,?OddQ]&/@Table[Binomial[n,k],{n,0,90},{k,0,n}] (* _Harvey P. Dale, Sep 22 2015 *)
    2^DigitSum[Range[0, 100], 2] (* Paolo Xausa, Jul 31 2025 *)
  • PARI
    {a(n) = if( n<0, 0, numerator(2^n / n!))};
    
  • PARI
    A001316(n)=1<M. F. Hasler, May 03 2009
    
  • PARI
    a(n)=2^hammingweight(n) \\ Charles R Greathouse IV, Jan 04 2013
    
  • Python
    def A001316(n):
        return 2**bin(n)[2:].count("1") # Indranil Ghosh, Feb 06 2017
    
  • Python
    def A001316(n): return 1<Karl-Heinz Hofmann, Aug 01 2025
    
  • Python
    import numpy # (version >= 2.0.0)
    n_up_to = 2**22
    A000079 = 1 << numpy.arange(n_up_to.bit_length())
    A001316 = A000079[numpy.bitwise_count(numpy.arange(n_up_to))]
    print(A001316[0:100]) # Karl-Heinz Hofmann, Aug 01 2025
    
  • Scheme
    (define (A001316 n) (let loop ((n n) (z 1)) (cond ((zero? n) z) ((even? n) (loop (/ n 2) z)) (else (loop (/ (- n 1) 2) (* z 2)))))) ;; Antti Karttunen, May 29 2017

Formula

a(n) = 2^A000120(n).
a(0) = 1; for n > 0, write n = 2^i + j where 0 <= j < 2^i; then a(n) = 2*a(j).
a(n) = 2*a(n-1)/A006519(n) = A000079(n)*A049606(n)/A000142(n).
a(n) = A038573(n) + 1.
G.f.: Product_{k>=0} (1+2*z^(2^k)). - Ralf Stephan, Apr 06 2003
a(n) = Sum_{i=0..2*n} (binomial(2*n, i) mod 2)*(-1)^i. - Benoit Cloitre, Nov 16 2003
a(n) mod 3 = A001285(n). - Benoit Cloitre, May 09 2004
a(n) = 2^n - 2*Sum_{k=0..n} floor(binomial(n, k)/2). - Paul Barry, Dec 24 2004
a(n) = Product_{k=0..log_2(n)} 2^b(n, k), b(n, k) = coefficient of 2^k in binary expansion of n. - Paul D. Hanna
Sum_{k=0..n-1} a(k) = A006046(n).
a(n) = n/2 + 1/2 + (1/2)*Sum_{k=0..n} (-(-1)^binomial(n,k)). - Stephen Crowley, Mar 21 2007
G.f. for a(n)/A156769(n): (1/2)*z^(1/2)*sinh(2*z^(1/2)). - Johannes W. Meijer, Feb 20 2009
Equals infinite convolution product of [1,2,0,0,0,0,0,0,0] aerated (A000079 - 1) times, i.e., [1,2,0,0,0,0,0,0,0] * [1,0,2,0,0,0,0,0,0] * [1,0,0,0,2,0,0,0,0]. - Mats Granvik, Gary W. Adamson, Oct 02 2009
a(n) = f(n, 1) with f(x, y) = if x = 0 then y otherwise f(floor(x/2), y*(1 + x mod 2)). - Reinhard Zumkeller, Nov 21 2009
a(n) = 2^(number of 1's in binary form of (n-1)). - Gabriel C. Benamy, Dec 08 2009
a((2*n+1)*2^p-1) = (2^p)*a(n), p >= 0. - Johannes W. Meijer, Jun 05 2011
a(n) = A000120(A001317(n)). - Reinhard Zumkeller, Nov 24 2012
a(n) = A226078(n,1). - Reinhard Zumkeller, May 25 2013
a(n) = lcm(n!, 2^n) / n!. - Daniel Suteu, Apr 28 2017
a(n) = A061142(A005940(1+n)). - Antti Karttunen, May 29 2017
a(0) = 1, a(2*n) = a(n), a(2*n+1) = 2*a(n). - Daniele Parisse, Feb 15 2024
a(n*m) <= a(n)^A000120(m). - Joe Amos, Mar 27 2025

Extensions

Additional comments from Henry Bottomley, Mar 12 2001
Further comments from N. J. A. Sloane, May 30 2009

A006047 Number of entries in n-th row of Pascal's triangle not divisible by 3.

Original entry on oeis.org

1, 2, 3, 2, 4, 6, 3, 6, 9, 2, 4, 6, 4, 8, 12, 6, 12, 18, 3, 6, 9, 6, 12, 18, 9, 18, 27, 2, 4, 6, 4, 8, 12, 6, 12, 18, 4, 8, 12, 8, 16, 24, 12, 24, 36, 6, 12, 18, 12, 24, 36, 18, 36, 54, 3, 6, 9, 6, 12, 18, 9, 18, 27, 6, 12, 18, 12, 24, 36, 18, 36, 54, 9, 18, 27, 18, 36, 54, 27, 54
Offset: 0

Views

Author

Keywords

Comments

Fixed point of the morphism a -> a, 2a, 3a, starting from a(1) = 1. - Robert G. Wilson v, Jan 24 2006
This is a particular case of the number of entries in n-th row of Pascal's triangle not divisible by a prime p, which is given by a simple recursion using ⊗, the Kronecker (or tensor) product of vectors. Let v_0=(1,2,...,p). Then v_{n+1}=v_0 ⊗ v_n, where the vector v_n contains the values for the first p^n rows of Pascal's triangle (rows 0 through p^n-1). - William B. Everett (bill(AT)chgnet.ru), Mar 29 2008
a(n) = A206424(n) + A227428(n); number of nonzero terms in row n of triangle A083093. - Reinhard Zumkeller, Jul 11 2013

Examples

			15 in base 3 is 120, here r=1 and s=1 so a(15) = 3*2 = 6.
William B. Everett's comment with p=3, n=2: v_0 = (1,2,3), v_1 = (1,2,3) => v_2 = (1*1,1*2,1*3,2*1,2*2,2*3,3*1,3*2,3*3) = (1,2,3,2,4,6,3,6,9), the first 3^2 values of the present sequence. - _Wolfdieter Lang_, Mar 19 2014
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006047 = sum . map signum . a083093_row
    -- Reinhard Zumkeller, Jul 11 2013
    
  • Maple
    p:=proc(n) local ct, k: ct:=0: for k from 0 to n do if binomial(n,k) mod 3 = 0 then else ct:=ct+1 fi od: end: seq(p(n),n=0..82); # Emeric Deutsch
    f:= proc(n) option remember; ((n mod 3)+1)*procname(ceil((n+1)/3)-1) end proc:
    f(0):= 1: f(1):= 2:
    seq(f(i), i=0..100); # Robert Israel, Oct 15 2015
  • Mathematica
    Nest[Flatten[ # /. a_Integer -> {a, 2a, 3a}] &, {1}, 4] (* Robert G. Wilson v, Jan 24 2006 *)
    Nest[ Join[#, 2#, 3#] &, {1}, 4] (* Robert G. Wilson v, Jul 27 2014 *)
  • PARI
    b(n)=if(n<3,n,if(n%3==0,3*b(n/3),if(n%3==1,1*b((n+2)/3),2*b((n+1)/3)))) \\ Ralf Stephan
    
  • PARI
    A006047(n) = b(1+n); \\ (The above PARI-program by Ralf Stephan is for offset-1-version of this sequence.) - Antti Karttunen, May 28 2017
    
  • PARI
    A006047(n) = { my(m=1, d); while(n, d = (n%3); m *= (1+d); n \= 3); m; }; \\ Antti Karttunen, May 28 2017
    
  • PARI
    a(n) = prod(i=1,#d=digits(n, 3), (1+d[i])) \\ David A. Corneth, May 28 2017
    
  • PARI
    upto(n) = my(res = [1], v); while(#res < n, v = concat(2*res, 3*res); res = concat(res, v)); res \\ David A. Corneth, May 29 2017
    
  • Python
    from sympy.ntheory.factor_ import digits
    from sympy import prod
    def a(n):
        d=digits(n, 3)
        return n + 1 if n<3 else prod(1 + d[i] for i in range(1, len(d)))
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jun 06 2017
    
  • Python
    from sympy.ntheory import digits
    def A006047(n): return 3**(s:=digits(n,3)).count(2)<Chai Wah Wu, Apr 24 2025
  • Scheme
    (define (A006047 n) (if (zero? n) 1 (let ((d (mod n 3))) (* (+ 1 d) (A006047 (/ (- n d) 3)))))) ;; For R6RS standard. Use modulo instead of mod in older Schemes like MIT/GNU Scheme. - Antti Karttunen, May 28 2017
    

Formula

Write n in base 3; if the representation contains r 1's and s 2's then a(n) = 3^s * 2^r. Also a(n) = Sum_{k=0..n} (C(n, k)^2 mod 3). - Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001
a(n) = b(n+1), with b(1)=1, b(2)=2, b(3n)=3b(n), b(3n+1)=b(n+1), b(3n+2)=2b(n+1). - Ralf Stephan, Sep 15 2003
G.f.: Product_{n>=0} (1+2*x^(3^n)+3*x^(2*3^n)) (Northshield). - Johannes W. Meijer, Jun 05 2011
G.f. g(x) satisfies g(x) = (1 + 2*x + 3*x^2)*g(x^3). - Robert Israel, Oct 15 2015
From Tom Edgar, Oct 15 2015: (Start)
a(3^k) = 2 for k>=0;
a(2*3^k) = 3 for k>=0;
a(n) = Product_{b_j != 0} a(b_j*3^j) where n = Sum_{j>=0} b_j*3^j is the ternary representation of n. (End)
A056239(a(n)) = A053735(n). - Antti Karttunen, Jun 03 2017
a(n) = Sum_{k = 0..n} mod(C(n,k)^2, 3). - Peter Bala, Dec 17 2020

Extensions

More terms from Ralf Stephan, Sep 15 2003

A190727 Product of (digits of n each incremented by 1) - 2.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 6, 14, 22, 30, 38, 46, 54, 62
Offset: 1

Views

Author

N. J. A. Sloane, May 17 2011

Keywords

Comments

Number of numbers in range 1 to n-1 whose decimal expansion is, term-by-term, dominated by n.

Examples

			a(23) = 10 since all the numbers 22, 21, 20, 13, 12, 11, 10, 3, 2, 1 count.
		

Crossrefs

Equals A089898(n)-2.

Programs

  • Mathematica
    f[n_]:=Module[{idnp=IntegerDigits[n]+1},Times@@idnp-2]; Array[f,80](* Harvey P. Dale, May 24 2011 *)
  • PARI
    a(n) = vecprod(apply(x->x+1, digits(n))) - 2; \\ Michel Marcus, Oct 06 2021

A335824 Persistence of the 1-shifted Sloane's problem: number of iterations of "multiply together all the digits of a number (in base 10) shifted by +1" needed to reach a fixed point or a cycle.

Original entry on oeis.org

2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 0, 2, 1, 1, 1, 2, 3, 1, 2, 4, 5, 2, 1, 1, 2, 3, 2, 4, 6, 3, 7, 2, 1, 1, 3, 2, 2, 2, 5, 2, 3, 2, 1, 2, 1, 4, 2, 7, 4, 4, 3, 2, 1, 2, 2, 6, 5, 4, 3, 5, 7, 2, 1, 3, 4, 3, 2, 4, 5, 6, 5, 2, 1, 1, 5, 7, 3, 3, 7, 5, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Lucas Colucci, Jun 25 2020

Keywords

Comments

The sequence can also be defined as the number of iterations of A089898 required to reach a fixed point or a cycle.
Wagstaff proved that a(n) is well-defined for every n; i.e., every number eventually converges to a fixed point or a cycle when iterating its digits shifted by 1. Moreover, the only fixed point is 18 and the only cycle is (2,3,...,10).
It is likely, but not known, that this sequence is unbounded.

Examples

			17->16->14->10, which belongs to the cycle (2,3,...,10). Thus, a(17)=3.
44->25->18, which is a fixed point. Thus, a(44)=2.
		

Crossrefs

Cf. A089898.

Programs

  • Maple
    g:= n -> convert(map(`+`,convert(n,base,10),1),`*`):
    f:= proc(n)
      local k, x, R;
      x:= n;
      R[x]:= 0;
      for k from 1 do
        x:= g(x);
        if assigned(R[x]) then return R[x] fi;
        R[x]:= k;
      od;
    end proc:
    map(f, [$0..100]); # Robert Israel, Jun 25 2020

A335979 Number of partitions of n into exactly two parts with no decimal carries.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 2, 4, 7, 9, 12, 14, 17, 19, 22, 24, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 3, 6, 10, 13, 17, 20, 24, 27, 31, 34, 3, 7, 11, 15, 19, 23
Offset: 0

Views

Author

Jason Zimba, Jul 02 2020

Keywords

Comments

a(m) = a(n) if m and n have the same nonzero digits, irrespective of order. For example, a(6044005) = a(45604).

Examples

			a(31) = 3 because there are three partitions of 31 into exactly two parts with no decimal carries: 30 + 1, 21 + 10, and 20 + 11.
a(100) = 0 because every partition of 100 into exactly two parts has at least one decimal carry.
		

Crossrefs

Cf. A088512 (analogous sequence for base 2), A089898.

Programs

  • Mathematica
    Ceiling[(1/2) Times @@ (IntegerDigits[n, 10] + 1)] - 1

Formula

If n has digits n_1, n_2, ..., n_k and all digits n_i are even, then a(n) = (1/2)(n_1 + 1)(n_2 + 1)...(n_k + 1) - 1/2. Otherwise, a(n) = (1/2)(n_1 + 1)(n_2 + 1)...(n_k + 1) - 1. Equivalently, a(n) = ceiling((1/2)(n_1 + 1)(n_2 + 1)...(n_k + 1)) - 1 for all n.
a(n) = ceiling((1/2)*A089898(n)) - 1.
Showing 1-6 of 6 results.