A335824 Persistence of the 1-shifted Sloane's problem: number of iterations of "multiply together all the digits of a number (in base 10) shifted by +1" needed to reach a fixed point or a cycle.
2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 0, 2, 1, 1, 1, 2, 3, 1, 2, 4, 5, 2, 1, 1, 2, 3, 2, 4, 6, 3, 7, 2, 1, 1, 3, 2, 2, 2, 5, 2, 3, 2, 1, 2, 1, 4, 2, 7, 4, 4, 3, 2, 1, 2, 2, 6, 5, 4, 3, 5, 7, 2, 1, 3, 4, 3, 2, 4, 5, 6, 5, 2, 1, 1, 5, 7, 3, 3, 7, 5, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0
Examples
17->16->14->10, which belongs to the cycle (2,3,...,10). Thus, a(17)=3. 44->25->18, which is a fixed point. Thus, a(44)=2.
Links
- Gabriel Bonuccelli, Lucas Colucci, and Edson de Faria, On the Erdős-Sloane and Shifted Sloane Persistence, arXiv:2009.01114 [math.NT], 2020.
- Samuel S. Wagstaff, Iterating the product of shifted digits, Fibonacci Quarterly 19.4 (1981): 340-347.
Crossrefs
Cf. A089898.
Programs
-
Maple
g:= n -> convert(map(`+`,convert(n,base,10),1),`*`): f:= proc(n) local k, x, R; x:= n; R[x]:= 0; for k from 1 do x:= g(x); if assigned(R[x]) then return R[x] fi; R[x]:= k; od; end proc: map(f, [$0..100]); # Robert Israel, Jun 25 2020
Comments