cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Lucas Colucci

Lucas Colucci's wiki page.

Lucas Colucci has authored 6 sequences.

A335824 Persistence of the 1-shifted Sloane's problem: number of iterations of "multiply together all the digits of a number (in base 10) shifted by +1" needed to reach a fixed point or a cycle.

Original entry on oeis.org

2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 0, 2, 1, 1, 1, 2, 3, 1, 2, 4, 5, 2, 1, 1, 2, 3, 2, 4, 6, 3, 7, 2, 1, 1, 3, 2, 2, 2, 5, 2, 3, 2, 1, 2, 1, 4, 2, 7, 4, 4, 3, 2, 1, 2, 2, 6, 5, 4, 3, 5, 7, 2, 1, 3, 4, 3, 2, 4, 5, 6, 5, 2, 1, 1, 5, 7, 3, 3, 7, 5, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Author

Lucas Colucci, Jun 25 2020

Keywords

Comments

The sequence can also be defined as the number of iterations of A089898 required to reach a fixed point or a cycle.
Wagstaff proved that a(n) is well-defined for every n; i.e., every number eventually converges to a fixed point or a cycle when iterating its digits shifted by 1. Moreover, the only fixed point is 18 and the only cycle is (2,3,...,10).
It is likely, but not known, that this sequence is unbounded.

Examples

			17->16->14->10, which belongs to the cycle (2,3,...,10). Thus, a(17)=3.
44->25->18, which is a fixed point. Thus, a(44)=2.
		

Crossrefs

Cf. A089898.

Programs

  • Maple
    g:= n -> convert(map(`+`,convert(n,base,10),1),`*`):
    f:= proc(n)
      local k, x, R;
      x:= n;
      R[x]:= 0;
      for k from 1 do
        x:= g(x);
        if assigned(R[x]) then return R[x] fi;
        R[x]:= k;
      od;
    end proc:
    map(f, [$0..100]); # Robert Israel, Jun 25 2020

A335808 Nonzero multiplicative persistence in base 10: number of iterations of "multiply nonzero digits in base 10" needed to reach a number < 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 1, 1, 2, 2, 2, 3, 2, 3, 2, 3, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 1, 1, 2, 2, 3, 3, 2, 4, 3, 3, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 2, 3, 3, 3, 3, 3, 3, 2
Offset: 0

Author

Lucas Colucci, Jun 24 2020

Keywords

Comments

Coincides with A031346 up to n=204.
Differs from A087472 first at n=110. - R. J. Mathar, Aug 10 2020

References

  • R. K. Guy, Unsolved Problems in Number Theory, E16, pages 262-263.

Crossrefs

Programs

A106793 Number of words (over an alphabet of size 26) of length n with all different letters.

Original entry on oeis.org

1, 26, 650, 15600, 358800, 7893600, 165765600, 3315312000, 62990928000, 1133836704000, 19275223968000, 308403583488000, 4626053752320000, 64764752532480000, 841941782922240000, 10103301395066880000
Offset: 0

Author

Luca Colucci, May 17 2005

Keywords

Examples

			a(2) = 650 because 26! / 24! = 650
		

Crossrefs

Cf. A106710.

Formula

a(n) = 26! / (26 - n)!

A108297 Least positive k such that k * n^2 ends with n, or 0 no such k exists.

Original entry on oeis.org

1, 1, 3, 7, 4, 1, 1, 3, 2, 9, 0, 91, 23, 77, 0, 0, 11, 53, 0, 79, 0, 81, 0, 87, 24, 1, 0, 63, 17, 69, 0, 71, 18, 97, 0, 0, 16, 73, 0, 59, 0, 61, 0, 7, 4, 0, 0, 83, 12, 49, 0, 51, 13, 17, 0, 0, 21, 93, 0, 39, 0, 41, 0, 27, 9, 0, 0, 3, 7, 29, 0, 31, 8, 37, 0, 3, 1, 13, 0, 19, 0, 21, 0, 47, 14, 0
Offset: 0

Author

Luca Colucci, Jun 29 2005

Keywords

Examples

			a(3) = 7 because 7 * 3^2 = 63, which ends with "3".
a(11) = 91 because 91 * 11^2 = 11011 which ends with "11".
a(22) = 0 because there is no "k" such that k*22^2 ends with 22.
		

Programs

  • Mathematica
    f[n_] := Block[{k = 1, n2 = n^2, m = Max[10^Floor[ Log[10, n] + 1], 10]}, While[k < 10^4 && Mod[k*n2, m] != n, k++ ]; If[k == 10^4, 0, k]]; Table[ f[n], {n, 85}] (* Robert G. Wilson v, Jul 02 2005 *)

Extensions

Edited and extended by Robert G. Wilson v, Jul 02 2005

A108343 Gapful numbers >= 100: numbers that are divisible by the number formed by their first and last digit. Numbers up to 100 trivially have this property and are excluded.

Original entry on oeis.org

100, 105, 108, 110, 120, 121, 130, 132, 135, 140, 143, 150, 154, 160, 165, 170, 176, 180, 187, 190, 192, 195, 198, 200, 220, 225, 231, 240, 242, 253, 260, 264, 275, 280, 286, 297, 300, 315, 330, 341, 352, 360, 363, 374, 385, 390, 396, 400, 405, 440, 451
Offset: 1

Author

Luca Colucci, Jul 01 2005

Keywords

Examples

			253 is in the sequence because 253 = 11 * 23 and 23 is the concatenation of 2 and 3 (first and last digit of 253).
		

Programs

  • Mathematica
    fQ[ n_ ] := Block[ {id = IntegerDigits[ n ]}, IntegerQ[ n / FromDigits[ {id[ [ 1 ] ], id[ [ -1 ] ]} ] ] ]; Select[ Range[ 100, 461 ], fQ[ # ] & ] (* Robert G. Wilson v, Jul 19 2005 *)

Extensions

Corrected and extended by Robert G. Wilson v, Jul 19 2005

A106710 Number of words with n letters from an alphabet of size 26 with at least two equal consecutive letters.

Original entry on oeis.org

0, 26, 1326, 50726, 1725126, 55009526, 1684153926, 50135658326, 1462218522726, 41984966747126, 1190791264331526, 33440126095275926, 931432109043580326, 25766955599293244726, 708683864685628269126, 19394355959426432653526, 528467641885089690397926
Offset: 1

Author

Luca Colucci, May 14 2005

Keywords

Examples

			a(3) = 1326 because 26^3 - 26*(25^2) = 1326.
		

Crossrefs

Programs

  • Mathematica
    Table[26*(26^(n-1) -25^(n-1)), {n, 25}] (* G. C. Greubel, Sep 10 2021 *)
  • PARI
    a(n) = 26^n - 26*(25^(n - 1)); \\ Michel Marcus, Aug 14 2013
    
  • PARI
    concat(0, Vec(26*x^2/((25*x-1)*(26*x-1)) + O(x^100))) \\ Colin Barker, Nov 05 2015
    
  • Sage
    [26*(26^(n-1) - 25^(n-1)) for n in (1..25)] # G. C. Greubel, Sep 10 2021

Formula

a(n) = 26^n - 26*25^(n - 1).
From Colin Barker, Nov 05 2015: (Start)
a(n) = 51*a(n-1) - 650*a(n-2) for n>2.
G.f.: 26*x^2 / ((1-25*x)*(1-26*x)). (End)
From G. C. Greubel, Sep 10 2021: (Start)
a(n) = 26*(A009970(n-1) - A009969(n-1)).
E.g.f.: exp(26*x) - (26/25)*exp(25*x). (End)

Extensions

More terms from Michel Marcus, Aug 14 2013