A089901 Main diagonal of A089900, also the inverse hyperbinomial of A000312 (offset 1).
1, 3, 18, 159, 1848, 26595, 456048, 9073911, 205437312, 5214027267, 146602156800, 4522866752943, 151895344131072, 5516066815430691, 215373243256915968, 8996883483108522375, 400372897193449586688, 18908951043963993686019
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..380
- Nicholas John Bizzell-Browning, LIE scales: Composing with scales of linear intervallic expansion, Ph. D. Thesis, Brunel Univ. (UK, 2024). See p. 162.
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
Programs
-
Mathematica
CoefficientList[Series[1/(1+LambertW[-x])^3, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 09 2013 *) Flatten[{1,Table[Sum[n^(n-k)*Binomial[n,k]*(k+1)!,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jul 09 2013 *) a[n_] := (n^(n + 2) + Exp[n] Gamma[n + 2, n]) / (n + 1); Table[a[n], {n, 0, 17}] (* Peter Luschny, Nov 29 2021 *)
-
PARI
/* As (n+1)-th term of the n-th binomial transform of {(n+1)!}: */ {a(n)=if(n<0,0,sum(i=0,n,n^(n-i)*binomial(n,i)*(i+1)!))} for(n=0,20,print1(a(n),", "))
-
PARI
/* As (n+1)-th term of inverse hyperbinomial of {(n+1)^(n+1)}: */ {a(n)=if(n<0,0,sum(i=0,n,-(n-i-1)^(n-i-1)*binomial(n,i)*(i+1)^(i+1)))} for(n=0,20,print1(a(n),", "))
Formula
a(n) = Sum_{k=0..n} n^(n-k) * C(n,k) * (k+1)!.
a(n) = Sum_{k=0..n} -(n-k-1)^(n-k-1) * C(n,k) * (k+1)^(k+1).
E.g.f.: 1 / (1 + LambertW(-x))^3.
E.g.f.: (Sum_{n>=0} (n+1)^(n+1) * x^n/n!) * (Sum_{n>=0} -(n-1)^(n-1) * x^n/n!).
a(n) ~ n^(n+1) * (1 + sqrt(Pi/(2*n))). - Vaclav Kotesovec, Jul 09 2013
a(n) = (n^(n + 2) + exp(n)*Gamma(n + 2, n)) / (n + 1). - Peter Luschny, Nov 29 2021
Comments