A089928 a(n) = 2*a(n-1) + 2*a(n-3) + a(n-4), with a(0)=1, a(1)=2, a(3)=4, a(4)=10.
1, 2, 4, 10, 25, 60, 144, 348, 841, 2030, 4900, 11830, 28561, 68952, 166464, 401880, 970225, 2342330, 5654884, 13652098, 32959081, 79570260, 192099600, 463769460, 1119638521, 2703046502, 6525731524, 15754509550, 38034750625, 91824010800
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Kenneth Edwards and Michael A. Allen, New combinatorial interpretations of the Fibonacci numbers squared, golden rectangle numbers, and Jacobsthal numbers using two types of tile, J. Int. Seq. 24 (2021) Article 21.3.8.
- Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (2,0,2,1).
Programs
-
Magma
[(Evaluate(DicksonFirst(n+2,-1), 2) + 2*(-1)^Binomial(n,2))/8: n in [0..40]]; // G. C. Greubel, Aug 18 2022
-
Mathematica
CoefficientList[Series[1/(1-2x-2x^3-x^4),{x,0,30}],x] (* Michael A. Allen, Mar 12 2021 *) LinearRecurrence[{2,0,2,1}, {1,2,4,10}, 41] (* G. C. Greubel, Aug 18 2022 *) nxt[{a_,b_,c_,d_}]:={b,c,d,2d+2b+a}; NestList[nxt,{1,2,4,10},30][[;;,1]] (* Harvey P. Dale, Jul 18 2024 *)
-
SageMath
[(lucas_number2(n+2,2,-1) +2*(-1)^binomial(n,2))/8 for n in (0..40)] # G. C. Greubel, Aug 18 2022
Formula
a(n) = ( (1+sqrt(2))^(n+2) + (1-sqrt(2))^(n+2) + 2*(-1)^floor(n/2) )/8.
a(n) = (-i)^n*Sum_{k=0..floor(n/2)} U(n-2*k, i) with i^2 = -1.
a(n) + a(n+2) = A000129(n+3). - Alex Ratushnyak, Aug 06 2012
G.f.: 1/ ( (1+2*x)*(1-2*x-x^2) ). - R. J. Mathar, Apr 26 2013
Extensions
Formula corrected by Max Alekseyev, Aug 22 2013
Comments