cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089928 a(n) = 2*a(n-1) + 2*a(n-3) + a(n-4), with a(0)=1, a(1)=2, a(3)=4, a(4)=10.

Original entry on oeis.org

1, 2, 4, 10, 25, 60, 144, 348, 841, 2030, 4900, 11830, 28561, 68952, 166464, 401880, 970225, 2342330, 5654884, 13652098, 32959081, 79570260, 192099600, 463769460, 1119638521, 2703046502, 6525731524, 15754509550, 38034750625, 91824010800
Offset: 0

Views

Author

Paul Barry, Nov 15 2003

Keywords

Comments

a(n) is the number of tilings of an n-board (a board of size n X 1) using white squares, black squares, and white (1,1)-fences. A (1,1)-fence is a tile composed of two squares separated by a gap of width 1. - Michael A. Allen, Mar 12 2021
a(n) is the number of tilings of an n-board using white squares, black squares, white trominoes, black trominoes, and white tetrominoes. - Michael A. Allen, Mar 12 2021

Crossrefs

Programs

  • Magma
    [(Evaluate(DicksonFirst(n+2,-1), 2) + 2*(-1)^Binomial(n,2))/8: n in [0..40]]; // G. C. Greubel, Aug 18 2022
    
  • Mathematica
    CoefficientList[Series[1/(1-2x-2x^3-x^4),{x,0,30}],x] (* Michael A. Allen, Mar 12 2021 *)
    LinearRecurrence[{2,0,2,1}, {1,2,4,10}, 41] (* G. C. Greubel, Aug 18 2022 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,2d+2b+a}; NestList[nxt,{1,2,4,10},30][[;;,1]] (* Harvey P. Dale, Jul 18 2024 *)
  • SageMath
    [(lucas_number2(n+2,2,-1) +2*(-1)^binomial(n,2))/8 for n in (0..40)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = ( (1+sqrt(2))^(n+2) + (1-sqrt(2))^(n+2) + 2*(-1)^floor(n/2) )/8.
a(n) = (-i)^n*Sum_{k=0..floor(n/2)} U(n-2*k, i) with i^2 = -1.
a(n) + a(n+2) = A000129(n+3). - Alex Ratushnyak, Aug 06 2012
G.f.: 1/ ( (1+2*x)*(1-2*x-x^2) ). - R. J. Mathar, Apr 26 2013
4*a(n) = A057077(n) + A001333(n+2). - R. J. Mathar, Apr 26 2013
a(2*n) = (A000129(n+1))^2 = A079291(n+1). - Michael A. Allen, Mar 12 2021
a(2*n+1) = A000129(n+1)*A000129(n+2) = A114620(n+1). - Michael A. Allen, Mar 12 2021

Extensions

Formula corrected by Max Alekseyev, Aug 22 2013