A089949 Triangle T(n,k), read by rows, given by [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] where DELTA is the operator defined in A084938.
1, 0, 1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 12, 34, 24, 0, 1, 20, 110, 210, 120, 0, 1, 30, 270, 974, 1452, 720, 0, 1, 42, 560, 3248, 8946, 11256, 5040, 0, 1, 56, 1036, 8792, 38338, 87504, 97296, 40320, 0, 1, 72, 1764, 20580, 129834, 463050, 920184, 930960, 362880
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 2; 0, 1, 6, 6; 0, 1, 12, 34, 24; 0, 1, 20, 110, 210, 120; 0, 1, 30, 270, 974, 1452, 720; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Mathematica
m = 10; gf = (1/x)*(1-1/(1+Sum[Product[(1+k*y), {k, 0, n-1}]*x^n, {n, 1, m}])); CoefficientList[#, y]& /@ CoefficientList[gf + O[x]^m, x] // Flatten (* Jean-François Alcover, May 11 2019 *)
-
PARI
T(n,k)=if(n
Paul D. Hanna, Aug 16 2005
Formula
Sum_{k=0..n} x^(n-k)*T(n,k) = A111528(x, n); see A000142, A003319, A111529, A111530, A111531, A111532, A111533 for x = 0, 1, 2, 3, 4, 5, 6. - Philippe Deléham, Aug 09 2005
Sum_{k=0..n} T(n,k)*3^k = A107716(n). - Philippe Deléham, Aug 15 2005
Sum_{k=0..n} T(n,k)*2^k = A000698(n+1). - Philippe Deléham, Aug 15 2005
G.f.: A(x, y) = (1/x)*(1 - 1/(1 + Sum_{n>=1} [Product_{k=0..n-1}(1+k*y)]*x^n )). - Paul D. Hanna, Aug 16 2005
Comments