cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A003319 Number of connected permutations of [1..n] (those not fixing [1..j] for 0 < j < n). Also called indecomposable permutations, or irreducible permutations.

Original entry on oeis.org

1, 1, 1, 3, 13, 71, 461, 3447, 29093, 273343, 2829325, 31998903, 392743957, 5201061455, 73943424413, 1123596277863, 18176728317413, 311951144828863, 5661698774848621, 108355864447215063, 2181096921557783605, 46066653228356851631, 1018705098450570562877
Offset: 0

Views

Author

Keywords

Comments

Also the number of permutations with no global descents, as introduced by Aguiar and Sottile [Corollaries 6.3, 6.4 and Remark 6.5].
Also the dimensions of the homogeneous components of the space of primitive elements of the Malvenuto-Reutenauer Hopf algebra of permutations. This result, due to Poirier and Reutenauer [Theoreme 2.1] is stated in this form in the work of Aguiar and Sottile [Corollary 6.3] and also in the work of Duchamp, Hivert and Thibon [Section 3.3].
Related to number of subgroups of index n-1 in free group of rank 2 (i.e., maximal number of subgroups of index n-1 in any 2-generator group). See Problem 5.13(b) in Stanley's Enumerative Combinatorics, Vol. 2.
Also the left border of triangle A144107, with row sums = n!. - Gary W. Adamson, Sep 11 2008
Hankel transform is A059332. Hankel transform of aerated sequence is A137704(n+1). - Paul Barry, Oct 07 2008
For every n, a(n+1) is also the moment of order n for the probability density function rho(x) = exp(x)/(Ei(1,-x)*(Ei(1,-x) + 2*I*Pi)) on the interval 0..infinity, with Ei the exponential-integral function. - Groux Roland, Jan 16 2009
Also (apparently), a(n+1) is the number of rooted hypermaps with n darts on a surface of any genus (see Walsh 2012). - N. J. A. Sloane, Aug 01 2012
Also recurrent sequence A233824 (for n > 0) in Panaitopol's formula for pi(x), the number of primes <= x. - Jonathan Sondow, Dec 19 2013
Also the number of mobiles (cyclic rooted trees) with an arrow from each internal vertex to a descendant of that vertex. - Brad R. Jones, Sep 12 2014
Up to sign, Möbius numbers of the shard intersection orders of type A, see Theorem 1.3 in Reading reference. - F. Chapoton, Apr 29 2015
Also, a(n) is the number of distinct leaf matrices of complete non-ambiguous trees of size n. - Daniel Chen, Oct 23 2022

Examples

			G.f. = 1 + x + x^2 + 3*x^3 + 13*x^4 + 71*x^5 + 461*x^6 + 3447*x^7 + 29093*x^8 + ...
From _Peter Luschny_, Aug 03 2022: (Start)
A permutation p in [n] (where n >= 0) is reducible if there exists an i in 1..n-1 such that for all j in the range 1..i and all k in the range i+1..n it is true that p(j) < p(k). (Note that a range a..b includes a and b.) If such an i exists we say that i splits the permutation at i.
Examples:
* () is not reducible since there is no index i which splits (). (=> a(0) = 1)
* (1) is not reducible since there is no index i which splits (1). (=> a(1) = 1)
* (1, 2) is reducible since index 1 splits (1, 2) as p(1) < p(2).
* (2, 1) is not reducible since at the only potential splitting point i = 1 we have p(1) > p(2). (=> a(2) = 1)
* For n = 3 we have (1, 2, 3), (1, 3, 2), and (2, 1, 3) are reducible and (2, 3, 1), (3, 1, 2), and (3, 2, 1) are irreducible. (End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 25, Example 20.
  • E. W. Bowen, Letter to N. J. A. Sloane, Aug 27 1976.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 84 (#25), 262 (#14) and 295 (#16).
  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 23, N_{n,2}.
  • I. M. Gessel and R. P. Stanley, Algebraic Enumeration, chapter 21 in Handbook of Combinatorics, Vol. 2, edited by R. L. Graham et al., The MIT Press, Mass, 1995.
  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 22.
  • H. P. Robinson, Letter to N. J. A. Sloane, Nov 19 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 1, Ex. 128; Vol. 2, 1999, see Problem 5.13(b).

Crossrefs

See A167894 for another version.
Bisections give A272656, A272657.
Row sums of A111184 and A089949.
Leading diagonal of A059438. A diagonal of A263484.
Cf. A090238, A000698, A356291 (reducible permutations).
Column k=0 of A370380 and A370381 (without pair of initial terms and with different offset).

Programs

  • Maple
    INVERTi([seq(n!,n=1..20)]);
    A003319 := proc(n) option remember; n! - add((n-j)!*A003319(j), j=1..n-1) end;
    [seq(A003319(n), n=0..50)]; # N. J. A. Sloane, Dec 28 2011
    series(2 - 1/hypergeom([1,1], [], x), x=0,50); # Mark van Hoeij, Apr 18 2013
  • Mathematica
    a[n_] := a[n] = n! - Sum[k!*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 11 2011, after given formula *)
    CoefficientList[Assuming[Element[x,Reals],Series[2-E^(1/x)* x/ExpIntegralEi[1/x],{x,0,20}]],x] (* Vaclav Kotesovec, Mar 07 2014 *)
    a[ n_] := If[ n < 2, 1, a[n] = (n - 2) a[n - 1] + Sum[ a[k] a[n - k], {k, n - 1}]]; (* Michael Somos, Feb 23 2015 *)
    Table[SeriesCoefficient[1 + x/(1 + ContinuedFractionK[-Floor[(k + 2)/2]*x, 1, {k, 1, n}]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 29 2017 *)
  • PARI
    {a(n) = my(A); if( n<1, 1, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (k - 2) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 24 2011 */
    
  • PARI
    {if(n<1,1,a(n)=local(A=x);for(i=1,n,A=x-x*A+A^2+x^2*A' +x*O(x^n));polcoeff(A,n))} /* Paul D. Hanna, Jul 30 2011 */
    
  • Sage
    def A003319_list(len):
        R, C = [1], [1] + [0] * (len - 1)
        for n in range(1, len):
            for k in range(n, 0, -1):
                C[k] = C[k - 1] * k
            C[0] = -sum(C[k] for k in range(1, n + 1))
            R.append(-C[0])
        return R
    print(A003319_list(21))  # Peter Luschny, Feb 19 2016

Formula

G.f.: 2 - 1/Sum_{k>=0} k!*x^k.
Also a(n) = n! - Sum_{k=1..n-1} k!*a(n-k) [Bowen, 1976].
Also coefficients in the divergent series expansion log Sum_{n>=0} n!*x^n = Sum_{n>=1} a(n+1)*x^n/n [Bowen, 1976].
a(n) = (-1)^(n-1) * det {| 1! 2! ... n! | 1 1! ... (n-1)! | 0 1 1! ... (n-2)! | ... | 0 ... 0 1 1! |}.
INVERTi transform of factorial numbers, A000142 starting from n=1. - Antti Karttunen, May 30 2003
Gives the row sums of the triangle [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] where DELTA is the operator defined in A084938; this triangle A089949. - Philippe Deléham, Dec 30 2003
a(n+1) = Sum_{k=0..n} A089949(n,k). - Philippe Deléham, Oct 16 2006
L.g.f.: Sum_{n>=1} a(n)*x^n/n = log( Sum_{n>=0} n!*x^n ). - Paul D. Hanna, Sep 19 2007
G.f.: 1+x/(1-x/(1-2*x/(1-2*x/(1-3*x/(1-3*x/(1-4*x/(1-4*x/(1-...)))))))) (continued fraction). - Paul Barry, Oct 07 2008
a(n) = -Sum_{i=0..n} (-1)^i*A090238(n, i) for n > 0. - Peter Luschny, Mar 13 2009
From Gary W. Adamson, Jul 14 2011: (Start)
a(n) = upper left term in M^(n-1), M = triangle A128175 as an infinite square production matrix (deleting the first "1"); as follows:
1, 1, 0, 0, 0, 0, ...
2, 2, 1, 0, 0, 0, ...
4, 4, 3, 1, 0, 0, ...
8, 8, 7, 4, 1, 0, ...
16, 16, 15, 11, 5, 1, ...
... (End)
O.g.f. satisfies: A(x) = x - x*A(x) + A(x)^2 + x^2*A'(x). - Paul D. Hanna, Jul 30 2011
From Sergei N. Gladkovskii, Jun 24 2012: (Start)
Let A(x) be the g.f.; then
A(x) = 1/Q(0), where Q(k) = x + 1 + x*k - (k+2)*x/Q(k+1).
A(x) = (1-1/U(0))/x, when U(k) = 1 + x*(2*k+1)/(1 - 2*x*(k+1)/(2*x*(k+1) + 1/U(k+1))). (End)
From Sergei N. Gladkovskii, Aug 03 2013: (Start)
Continued fractions:
G.f.: 1 - G(0)/2, where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+2) - 1 + x*(2*k+2)/G(k+1))).
G.f.: (x/2)*G(0), where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1/2) + 1/G(k+1))).
G.f.: x*G(0), where G(k) = 1 - x*(k+1)/(x - 1/G(k+1)).
G.f.: 1 - 1/G(0), where G(k) = 1 - x*(k+1)/(x*(k+1) - 1/(1 - x*(k+1)/(x*(k+1) - 1/G(k+1)))).
G.f.: x*W(0), where W(k) = 1 - x*(k+1)/(x*(k+1) - 1/(1 - x*(k+2)/(x*(k+2) - 1/W(k+1)))).
(End)
a(n) = A233824(n-1) if n > 0. (Proof. Set b(n) = A233824(n), so that b(n) = n*n! - Sum_{k=1..n-1} k!*b(n-k). To get a(n+1) = b(n) for n >= 0, induct on n, use (n+1)! = n*n! + n!, and replace k with k+1 in the sum.) - Jonathan Sondow, Dec 19 2013
a(n) ~ n! * (1 - 2/n - 1/n^2 - 5/n^3 - 32/n^4 - 253/n^5 - 2381/n^6 - 25912/n^7 - 319339/n^8 - 4388949/n^9 - 66495386/n^10), for coefficients see A260503. - Vaclav Kotesovec, Jul 27 2015
For n>0, a(n) = (A059439(n) - A259472(n))/2. - Vaclav Kotesovec, Aug 03 2015
From Peter Bala, May 23 2017: (Start)
G.f.: 1 + x/(1 + x - 2*x/(1 + 2*x - 3*x/(1 + 3*x - 4*x/(1 + 4*x - ...)))). Cf. A000698.
G.f.: 1/(1 - x/(1 + x - x/(1 - 2*x/(1 - 2*x/(1 - 3*x/(1 - 3*x/(1 - 4*x/(1 - 4*x/(1 - ...))))))))). (End)
Conjecture: a(n) = A370380(n-2, 0) = A370381(n-2, 0) for n > 1 with a(0) = a(1) = 1. - Mikhail Kurkov, Apr 26 2024

Extensions

More terms from Michael Somos, Jan 26 2000
Additional comments from Marcelo Aguiar (maguiar(AT)math.tamu.edu), Mar 28 2002
Added a(0)=0 (some of the formulas may now need adjusting). - N. J. A. Sloane, Sep 12 2012
Edited and set a(0) = 1 by Peter Luschny, Aug 03 2022

A000698 A problem of configurations: a(0) = 1; for n>0, a(n) = (2n-1)!! - Sum_{k=1..n-1} (2k-1)!! a(n-k). Also the number of shellings of an n-cube, divided by 2^n n!.

Original entry on oeis.org

1, 1, 2, 10, 74, 706, 8162, 110410, 1708394, 29752066, 576037442, 12277827850, 285764591114, 7213364729026, 196316804255522, 5731249477826890, 178676789473121834, 5925085744543837186, 208256802758892355202, 7734158085942678174730
Offset: 0

Views

Author

Keywords

Comments

Also number of nonisomorphic unlabeled connected Feynman diagrams of order 2n-2 for the electron propagator of quantum electrodynamics (QED), including vanishing diagrams. [Corrected by Charles R Greathouse IV, Jan 24 2014][Clarified by Robert Coquereaux, Sep 14 2014]
a(n+1) is the moment of order 2*n for the probability density function rho(x) = (1/sqrt(2*Pi))*exp(x^2/2)/[(u(x))^2+Pi/2], with u(x) = Integral_{t=0..x} exp(t*t/2) dt, on the real interval -infinity..infinity. - Groux Roland, Jan 13 2009
Starting (1, 2, 10, 74, ...) = INVERTi transform of A001147: (1, 3, 15, 105, ...). - Gary W. Adamson, Oct 21 2009
The Cvitanovic et al. paper relates this sequence to A005411 and A005413. - Robert Munafo, Jan 24 2010
Hankel transform of a(n+1) is A168467. - Paul Barry, Nov 26 2009
a(n) = number of labeled Dyck (n-1)-paths (A000108) in which each vertex that terminates an upstep is labeled with an integer i in [0,h], where h is the height of the vertex . For example UDUD contributes 4 labeled paths--0D0D, 0D1D, 1D0D, 1D1D where upsteps are replaced by their labels--and UUDD contributes 6 labeled paths to a(3)=10. The Deléham (Mar 24 2007) formula below counts these labeled paths by number of "0" labels. - David Callan, Aug 23 2011
a(n) is the number of indecomposable perfect matchings on [2n]. A perfect matching on [2n] is decomposable if a nonempty subset of the edges forms a perfect matching on [2k] for some kDavid Callan, Nov 29 2012
From Robert Coquereaux, Sep 12 2014: (Start)
QED diagrams are graphs with two kinds of edges (lines): a (non-oriented), f (oriented), and only one kind of (internal) vertex: aff. They may have internal and external (i.e., pendant) lines. The order is the number of (internal) vertices. Vanishing diagrams: QED diagrams containing loops of type f with an odd number of vertices are set to 0 (Furry theorem). Proper diagrams: connected QED diagrams that remain connected when an arbitrary internal line is cut.
The number of Feynman diagrams of order 2n for the electron propagator (2-point function of QED), vanishing or not, proper or not, of order 2n, starting from n = 0, is given by 1, 2, 10, 74, 706, 8162, ..., i.e., this sequence A000698, with the first term (equal to 1) dropped. Call Sf the associated g.f.
The number of non-vanishing Feynman diagrams, for the same 2-point function, is given by 1, 1, 4, 25, 208, 2146, ..., i.e., by the sequence A005411, with a first term of order 0, equal to 1, added. Call S the associated g.f.
If one does not remove the vanishing diagram, but, at the same time, considers only those graphs that are proper, one obtains the Feynman diagrams (vanishing and non-vanishing) for the self-energy function of QED, 0, 1, 3, 21, 207, 2529, ..., i.e., the sequence A115974 with a first term of order 0, equal to 0, added. A115974 is twice A167872. Call Sigmaf the associated g.f.
If one removes the vanishing diagrams and, at the same time, considers only those graphs that are proper, one obtains the Feynman diagrams for the self-energy function of QED given by 0, 1, 3, 18, 153, 1638, ..., i.e., by the sequence A005412, with a first term of order 0, equal to 0, added. Call Sigma the associated g.f.
Then Sf = 1/(1-Sigmaf) and S = 1/(1-Sigma). (End)
For n>0 sum over all Dyck paths of semilength n-1 of products over all peaks p of (x_p+y_p)/y_p, where x_p and y_p are the coordinates of peak p. - Alois P. Heinz, May 22 2015
Also, counts certain isomorphism classes of closed normal linear lambda terms. [N. Zeilberger, 2015]. - N. J. A. Sloane, Sep 18 2016
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018
For n >= 2, a(n) is the number of coalescent histories for a pair consisting of a matching lodgepole gene tree and species tree with 2n-1 leaves. - Noah A Rosenberg, Jun 21 2022

Examples

			G.f. = 1 + x + 2*x^2 + 10*x^3 + 74*x^4 + 706*x^5 + 8162*x^6 + 110410*x^7 + ...
		

References

  • Dubois C., Giorgetti A., Genestier R. (2016) Tests and Proofs for Enumerative Combinatorics. In: Aichernig B., Furia C. (eds) Tests and Proofs. TAP 2016. Lecture Notes in Computer Science, vol 9762. Springer.
  • R. W. Robinson, Counting irreducible Feynman diagrams exactly and asymptotically, Abstracts Amer. Math. Soc., 2002, #975-05-270.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
Column k=1 of A258219, A258222.
Row sums of A322398.

Programs

  • Maple
    A006882 := proc(n) option remember; if n <= 1 then 1 else n*procname(n-2); fi; end;
    A000698:=proc(n) option remember; global df; local k; if n=0 then RETURN(1); fi; A006882(2*n-1) - add(A006882(2*k-1)*A000698(n-k),k=1..n-1); end;
    A000698 := proc(n::integer) local resul,fac,pows,c,c1,p,i ; if n = 0 then RETURN(1) ; else pows := combinat[partition](n) ; resul := 0 ; for p from 1 to nops(pows) do c := combinat[permute](op(p,pows)) ; c1 := op(1,c) ; fac := nops(c) ; for i from 1 to nops(c1) do fac := fac*doublefactorial(2*op(i,c1)-1) ; od ; resul := resul-(-1)^nops(c1)*fac ; od : fi ; RETURN(resul) ; end; # R. J. Mathar, Apr 24 2006
    # alternative Maple program:
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, (x+y)/y, 1) +
                       b(x-1, y+1, true)  ))
        end:
    a:= n-> `if`(n=0, 1, b(2*n-2, 0, false)):
    seq(a(n), n=0..25);  # Alois P. Heinz, May 23 2015
    a_list := proc(len) local n, A; if len=1 then return [1] fi: A := Array(-1..len-2); A[-1] := 1; A[0] := 1; for n to len-2 do A[n] := (2*n-1)*A[n-1]+add(A[j]*A[n-j-1], j=0..n-1) od: convert(A, list) end: a_list(20); # Peter Luschny, Jul 18 2017
  • Mathematica
    a[n_] := a[n] = (2n - 1)!! - Sum[ a[n - k](2k - 1)!!, {k, n-1}]; Array[a, 18, 0] (* Ignacio D. Peixoto, Jun 23 2006 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ 2 - 1 / Sum[ (2 k - 1)!! x^k, {k, 0, n}], {x, 0, n}]]; (* Michael Somos, Nov 16 2011 *)
    a[n_]:= SeriesCoefficient[1+x(1/x+(E^((1/2)/x) Sqrt[2/\[Pi]] Sqrt[-(1/x)])/Erfc[Sqrt[-(1/x)]/Sqrt[2]]), {x,0,n}, Assumptions -> x >0](* Robert Coquereaux, Sep 14 2014 *)
    max = 20; g = t/Fold[1 - ((t + #2)*z)/#1 &, 1, Range[max, 1, -1]]; T[n_, k_] := SeriesCoefficient[g, {z, 0, n}, {t, 0, k}]; a[0] = 1; a[n_] := Sum[T[n-1, k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 31 2016, after Philippe Deléham *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2 - 1 / sum( k=0, n, x^k * (2*k)! /(2^k * k!), x * O(x^n)), n))}; /* Michael Somos, Feb 08 2011 */
    
  • PARI
    {a(n) = my(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2*k - 3) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 24 2011 */
    
  • Python
    from sympy import factorial2, cacheit
    @cacheit
    def a(n): return 1 if n == 0 else factorial2(2*n - 1) - sum(factorial2(2*k - 1)*a(n - k) for k in range(1, n))
    [a(n) for n in range(51)]  # Indranil Ghosh, Jul 18 2017

Formula

G.f.: 2 - 1/(1 + Sum_{n>=1} (2*n-1)!! * x^n ).
a(n+1) = Sum_{k=0..n} A089949(n, k)*2^k. - Philippe Deléham, Aug 15 2005
a(n+1) = Sum_{k=0..n} A053979(n,k). - Philippe Deléham, Mar 24 2007
From Paul Barry, Nov 26 2009: (Start)
G.f.: 1+x/(1-2x/(1-3x/(1-4x/(1-5x/(1-6x/(1-... (continued fraction).
G.f.: 1+x/(1-2x-6x^2/(1-7x-20x^2/(1-11x-42x^2/(1-15x-72x^2/(1-19x-110x^2/(1-... (continued fraction). (End)
G.f.: 1 + x * B(x) * C(x) where B(x) is the g.f. for A001147 and C(x) is the g.f. for A005416. - Michael Somos, Feb 08 2011
G.f.: 1+x/W(0); where W(k)=1+x+x*2k-x*(2k+3)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 17 2011
From Peter Bala, Dec 22 2011: (Start)
Recurrence relation: a(n+1) = (2*n-1)*a(n) + Sum_{k = 1..n} a(k)*a(n+1-k) for n >= 0 and a(1) = 1.
The o.g.f. B(x) = Sum_{n>=1} a(n)*x^(2*n-1) = x + 2*x^3 + 10*x^5 + 74*x^7 + ... satisfies the Riccati differential equation y'(x) = -1/x^2 + (1/x^3)*y(x) - (1/x^2)*y(x)^2 with initial condition y(0) = 0 (cf. A005412). The solution is B(x) = 1/z(x) + 1/x, where z(x) = -Sum_{n>=0} A001147(n) * x^(2*n+1) = -(x + x^3 + 3*x^5 + 15*x^7 + ...). The function b(x) = -B(1/x) satisfies b'(x) = -1 - (x + b(x))*b(x). Hence the differential operator (D^2 + x*D + 1), where D = d/dx, factorizes as (D - a(x))*(D - b(x)), where a(x) = -(x + b(x)), as conjectured by [Edgar, Problem 4.32]. For a refinement of this sequence see A053979. (End)
From Sergei N. Gladkovskii, Aug 19 2012, Oct 24 2012, Mar 19 2013, May 20 2013, May 29 2013, Aug 04 2013, Aug 05 2013: (Start)
Continued fractions:
G.f.: 2 - G(0) where G(k) = 1 - (k+1)*x/G(k+1).
G.f.: 2 - U(0) where U(k) = 1 - (2*k+1)*x/(1 - (2*k+2)*x/U(k+1)).
G.f.: 2 - U(0) where U(k) = 1 - (4*k+1)*x - (2*k+1)*(2*k+2)*x^2/U(k+1).
G.f.: 1/Q(0) where Q(k) = 1 - x*(2*k+2)/(1 - x*(2*k+3)/Q(k+1)).
G.f.: 1 + x/Q(0) where Q(k) = 1 - x*(k+2)/Q(k+1).
G.f.: 2 - G(0)/2 where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) - 1 + 2*x*(2*k+2)/ G(k+1))).
G.f.: 1 + x*G(0) where G(k) = 1 - x*(k+2)/(x*(k+2) - 1/G(k+1)).
G.f.: 2 - 1/B(x) where B(x) is the g.f. of A001147.
G.f.: 1 + x/(1-2*x*B(x)) where B(x) is the g.f. of A167872. (End)
a(n) ~ 2^(n+1/2) * n^n / exp(n). - Vaclav Kotesovec, Mar 10 2014
G.f.: 1 + x*(1/x + (sqrt(2/Pi) * exp(1/(2*x)) * sqrt(-1/x))/Erfc(sqrt(-1/x)/sqrt(2))) where Erfc(z) = 1 - Erf(z) is the complementary error function, and Erf(z) is the integral of the Gaussian distribution. This generating function is obtained from the generating functional of (4-dimensional) QED, evaluated in dimension 0 for the 2-point function, without the modification implementing Furry theorem. - Robert Coquereaux, Sep 14 2014
From Peter Bala, May 23 2017: (Start)
G.f. A(x) = 1 + x/(1 + x - 3*x/(1 + 3*x - 5*x/(1 + 5*x - 7*x/(1 + 7*x - ...)))).
A(x) = 1 + x/(1 + x - 3*x/(1 - 2*x/(1 - 5*x/(1 - 4*x/(1 - 7*x/(1 - 6*x/(1 - ...))))))). (End)

Extensions

Formula corrected by Ignacio D. Peixoto, Jun 23 2006
More terms from Sean A. Irvine, Feb 27 2011

A111528 Square table, read by antidiagonals, where the g.f. for row n+1 is generated by: x*R_{n+1}(x) = (1+n*x - 1/R_n(x))/(n+1) with R_0(x) = Sum_{n>=0} n!*x^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 13, 24, 1, 1, 5, 22, 71, 120, 1, 1, 6, 33, 148, 461, 720, 1, 1, 7, 46, 261, 1156, 3447, 5040, 1, 1, 8, 61, 416, 2361, 10192, 29093, 40320, 1, 1, 9, 78, 619, 4256, 23805, 99688, 273343, 362880, 1, 1, 10, 97, 876, 7045, 48096, 263313
Offset: 0

Views

Author

Paul D. Hanna, Aug 06 2005

Keywords

Examples

			Table begins:
  1, 1,  2,   6,   24,   120,    720,    5040,     40320, ...
  1, 1,  3,  13,   71,   461,   3447,   29093,    273343, ...
  1, 1,  4,  22,  148,  1156,  10192,   99688,   1069168, ...
  1, 1,  5,  33,  261,  2361,  23805,  263313,   3161781, ...
  1, 1,  6,  46,  416,  4256,  48096,  591536,   7840576, ...
  1, 1,  7,  61,  619,  7045,  87955, 1187845,  17192275, ...
  1, 1,  8,  78,  876, 10956, 149472, 2195208,  34398288, ...
  1, 1,  9,  97, 1193, 16241, 240057, 3804353,  64092553, ...
  1, 1, 10, 118, 1576, 23176, 368560, 6262768, 112784896, ...
Rows are generated by logarithms of factorial series:
log(1 + x + 2*x^2 + 6*x^3 + 24*x^4 + ... n!*x^n + ...) = x + (3/2)*x^2 + (13/3)*x^3 + (71/4)*x^4 + (461/5)*x^5 + ...
(1/2)*log(1 + 2*x + 6*x^2 + ... + ((n+1)!/1!)*x^n + ...) = x + (4/2)*x^2 + (22/3)*x^3 + (148/4)*x^4 + (1156/5)*x^5 + ...
(1/3)*log(1 + 3*x + 12*x^2 + 60*x^3 + ... + ((n+2)!/2!)*x^n + ...) = x + (5/2)*x^2 + (33/3)*x^3 + (261/4)*x^4 + (2361/5)*x^5 +...
G.f. of row n may be expressed by the continued fraction:
R_n(x) = 1/(1+n*x - (n+1)*x/(1+(n+1)*x - (n+2)*x/(1+(n+2)*x -...
or recursively by: R_n(x) = 1/(1+n*x - (n+1)*x*R_{n+1}(x)).
		

Crossrefs

Cf: A003319 (row 1), A111529 (row 2), A111530 (row 3), A111531 (row 4), A111532 (row 5), A111533 (row 6), A111534 (diagonal).
Similar recurrences: A124758, A243499, A284005, A329369, A341392.

Programs

  • Maple
    T := (n, k) -> coeff(series(hypergeom([n+1, 1], [], x)/hypergeom([n, 1], [], x), x, 21), x, k):
    #display as a sequence
    seq(seq(T(n-k, k), k = 0..n), n = 0..10);
    # display as a square array
    seq(print(seq(T(n, k), k = 0..10)), n = 0..10); # Peter Bala, Jul 16 2022
  • Mathematica
    T[n_, k_] := T[n, k] = Which[n < 0 || k < 0, 0, k == 0 || k == 1, 1, n == 0, k!, True, (T[n - 1, k + 1] - T[n - 1, k])/n - Sum[T[n, j]*T[n - 1, k - j], {j, 1, k - 1}]]; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2018 *)
  • PARI
    {T(n,k)=if(n<0||k<0,0,if(k==0||k==1,1,if(n==0,k!, (T(n-1,k+1)-T(n-1,k))/n-sum(j=1,k-1,T(n,j)*T(n-1,k-j)))))}
    for(n=0,10,for(k=0,10,print1(T(n,k),", ")); print(""))
    
  • PARI
    {T(n,k)=if(n<0||k<0,0,if(k==0,1,if(n==0,k!, k/n*polcoeff(log(sum(m=0,k,(n-1+m)!/(n-1)!*x^m)),k))))}
    for(n=0,10,for(k=0,10,print1(T(n,k),", ")); print(""))

Formula

T(n, 0) = 1, T(0, k) = k!, otherwise for n>=1 and k>=1:
T(n, k) = (T(n-1, k+1) - T(n-1, k))/n - Sum_{j=1..k-1} T(n, j)*T(n-1, k-j).
T(n, k) = (k/n)*[x^k] log(Sum_{m=0..k} (n-1+m)!/(n-1)!*x^m).
T(n, k) = Sum_{j = 0..k} A089949(k, j)*n^(k-j). - Philippe Deléham, Aug 08 2005
R_n(x) = -((n-1)!/n)/Sum_{i>=1} (i+n-2)!*x^i, n > 0. - Vladeta Jovovic, May 06 2006
G.f. of row R may be expressed by the continued fraction: W(0), where W(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1+R)/( x*(k+1+R) - 1/W(k+1) ))). - Sergei N. Gladkovskii, Aug 26 2013
Conjecture: T(n, k) = b(2^(k-1) - 1, n) for k > 0 with T(n, 0) = 1 where b(n, m) = b(floor(n/2), m) + b(floor((2n - 2^A007814(n))/2), m) + m*b(A025480(n-1), m) for n > 0 with b(0, m) = 1. - Mikhail Kurkov, Dec 16 2021
From Peter Bala, Jul 11 2022: (Start)
O.g.f. for row n, n >= 1: R(n,x) = ( Sum_{k >= 0} (n+k)!/n!*x^k )/( Sum_{k >= 0} (n-1+k)!/(n-1)!*x^k ).
R(n,x)/(1 - n*x*R(n,x)) = Sum_{k >= 0} (n+k)!/n!*x^k.
For n >= 0, R(n,x) satisfies the Riccati equation x^2*d/dx(R(n,x)) + n*x*R(n,x)^2 - (1 + (n-1)*x)*R(n,x) + 1 = 0 with R(n,0) = 1.
Apply Stokes 1982 to find that for n >= 0, R(n,x) = 1/(1 - x/(1 - (n+1)*x/(1 - 2*x/(1 - (n+2)*x/(1 - 3*x/(1 - (n+3)*x/(1 - 4*x/(1 - (n+4)*x/(1 - ...))))))))), a continued fraction of Stieltjes type. (End)

A111529 Row 2 of table A111528.

Original entry on oeis.org

1, 1, 4, 22, 148, 1156, 10192, 99688, 1069168, 12468208, 157071424, 2126386912, 30797423680, 475378906432, 7793485765888, 135284756985472, 2479535560687360, 47860569736036096, 970606394944476160, 20635652201785613824, 459015456156148876288, 10662527360021306782720
Offset: 0

Views

Author

Paul D. Hanna, Aug 06 2005

Keywords

Examples

			(1/2)*log(1 + 2*x + 6*x^2 + ... + ((n+1)!/1!)*x^n + ...)
= x + (4/2)*x^2 + (22/3)*x^3 + (148/4)*x^4 + (1156/5)*x^5 + ...
		

Crossrefs

Cf. A111528 (table), A003319 (row 1), A111530 (row 3), A111531 (row 4), A111532 (row 5), A111533 (row 6), A111534 (diagonal).

Programs

  • Maple
    N:= 30: # to get a(0) to a(N)
    g:= 1/2*log(add((n+1)!*x^n,n=0..N+1)):
    S:= series(g,x,N+1);
    1, seq(j*coeff(S,x,j),j=0..N); # Robert Israel, Jul 10 2015
  • Mathematica
    T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n - Sum[T[n, j] T[n-1, k-j], {j, 1, k-1}]];
    a[n_] := T[2, n];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 09 2018 *)
  • PARI
    {a(n)=if(n<0,0,if(n==0,1, (n/2)*polcoeff(log(sum(m=0,n,(m+1)!/1!*x^m)),n)))}

Formula

G.f.: (1/2)*log(Sum_{n >= 0} (n+1)!*x^n) = Sum_{n >= 1} a(n)*x^n/n.
G.f.: 1/(1+2*x - 3*x/(1+3*x - 4*x/(1+4*x - ... (continued fraction).
a(n) = Sum_{k = 0..n} 2^(n-k)*A089949(n,k). - Philippe Deléham, Oct 16 2006
G.f. 1/(2*x-G(0)) where G(k) = 2*x - 1 - k*x - x*(k+1)/G(k+1); G(0)=x (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 14 2012
G.f.: 1/(2*x) - 1/(G(0) - 1) where G(k) = 1 + x*(k+1)/(1 - 1/(1 + 1/G(k+1)));(continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 20 2012
G.f.: 1 + x/(G(0)-2*x) where G(k) = 1 + (k+1)*x - x*(k+3)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 26 2012
G.f.: (1 + 1/Q(0))/2, where Q(k) = 1 + k*x - x*(k+2)/Q(k+1); (continued fraction). In general, the g.f. for row (r+2) is (r + 1 + 1/Q(0))/(r + 2). - Sergei N. Gladkovskii, May 04 2013
G.f.: W(0), where W(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+3)/( x*(k+3) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
a(n) ~ n! * n^2/2 * (1 - 1/n - 2/n^2 - 8/n^3 - 52/n^4 - 436/n^5 - 4404/n^6 - 51572/n^7 - 683428/n^8 - 10080068/n^9 - 163471284/n^10), where the coefficients are given by (n+2)*(n+1)/n^2 * Sum_{k>=0} A260491(k)/(n+2)^k. - Vaclav Kotesovec, Jul 27 2015
a(n) = -A077607(n+2)/2. - Vaclav Kotesovec, Jul 29 2015
From Peter Bala, Jul 12 2022: (Start)
O.g.f: A(x) = ( Sum_{k >= 0} ((k+2)!/2!)*x^k )/( Sum_{k >= 0} (k+1)!*x^k ).
A(x)/(1 - 2*x*A(x)) = Sum_{k >= 0} ((k+2)!/2!)*x^k.
Riccati differential equation: x^2*A'(x) + 2*x*A^2(x) - (1 + x)*A(x) + 1 = 0.
Apply Stokes 1982 to find that A(x) = 1/(1 - x/(1 - 3*x/(1 - 2*x/(1 - 4*x/(1 - 3*x/(1 - 5*x/(1 - ... - n*x/(1 - (n+2)*x/(1 - ...))))))))), a continued fraction of Stieltjes type. (End)

A111530 Row 3 of table A111528.

Original entry on oeis.org

1, 1, 5, 33, 261, 2361, 23805, 263313, 3161781, 40907241, 567074925, 8385483393, 131787520101, 2194406578521, 38605941817245, 715814473193073, 13956039627763221, 285509132504621001, 6116719419966460365
Offset: 0

Views

Author

Paul D. Hanna, Aug 06 2005

Keywords

Examples

			(1/3)*(log(1 + 3*x + 12*x^2 + 60*x^3 + ... + (n+2)!/2!)*x^n + ...)
= x + 5/2*x^2 + 33/3*x^3 + 261/4*x^4 + 2361/5*x^5 + ...
		

Crossrefs

Cf: A111528 (table), A003319 (row 1), A111529 (row 2), A111531 (row 4), A111532 (row 5), A111533 (row 6), A111534 (diagonal).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n - Sum[T[n, j]*T[n-1, k-j], {j, 1, k-1}]];
    a[n_] := T[3, n];
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Aug 09 2018 *)
  • PARI
    {a(n)=if(n<0,0,if(n==0,1, (n/3)*polcoeff(log(sum(m=0,n,(m+2)!/2!*x^m) + x*O(x^n)),n)))} \\ fixed by Vaclav Kotesovec, Jul 27 2015

Formula

G.f.: (1/3)*log(Sum_{n>=0} (n+2)!/2!*x^n) = Sum_{n>=1} a(n)*x^n/n.
G.f.: A(x) = 1/(1 + 3*x - 4*x/(1 + 4*x - 5*x/(1 + 5*x - ... (continued fraction).
a(n) = Sum_{k=0..n} 3^(n-k)*A089949(n,k). - Philippe Deléham, Oct 16 2006
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k-1/2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
G.f.: W(0), where W(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1+R)/( x*(k+1+R) - 1/W(k+1) ))); R=3 is Row R of table A111528 (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
a(n) ~ n! * n^3/6 * (1 - 4/n^2 - 15/n^3 - 99/n^4 - 882/n^5 - 9531/n^6 - 119493/n^7 - 1693008/n^8 - 26638245/n^9 - 459682047/n^10). - Vaclav Kotesovec, Jul 27 2015
From Peter Bala, May 24 2017: (Start)
O.g.f. A(x) = ( Sum_{n >= 0} (n+3)!/3!*x^n ) / ( Sum_{n >= 0} (n+2)!/2!*x^n ).
1/(1 - 3*x*A(x)) = Sum_{n >= 0} (n+2)!/2!*x^n. Cf. A001710.
A(x)/(1 - 3*x*A(x)) = Sum_{n >= 0} (n+3)!/3!*x^n. Cf. A001715.
A(x) satisfies the Riccati equation x^2*A'(x) + 3*x*A^2(x) - (1 + 2*x)*A(x) + 1 = 0.
G.f. as an S-fraction: A(x) = 1/(1 - x/(1 - 4*x/(1 - 2*x/(1 - 5*x/(1 - 3*x/(1 - 6*x/(1 - ... - n*x/(1 - (n+3)*x/(1 - ... ))))))))), by Stokes 1982.
A(x) = 1/(1 + 3*x - 4*x/(1 - x/(1 - 5*x/(1 - 2*x/(1 - 6*x/(1 - 3*x/(1 - ... - (n + 3)*x/(1 - n*x/(1 - ... ))))))))). (End)

A111531 Row 4 of table A111528.

Original entry on oeis.org

1, 1, 6, 46, 416, 4256, 48096, 591536, 7840576, 111226816, 1680157056, 26918720896, 455971214336, 8143926373376, 153013563734016, 3017996904928256, 62369444355076096, 1348096649995841536, 30426167700424728576, 715935203128235401216
Offset: 0

Views

Author

Paul D. Hanna, Aug 06 2005

Keywords

Examples

			(1/4)*(log(1 + 4*x + 20*x^2 + 120*x^3 + ... + (n+3)!/3!)*x^n + ...)
= x + 6/2*x^2 + 46/3*x^3 + 416/4*x^4 + 4256/5*x^5 + ...
		

Crossrefs

Cf: A111528 (table), A003319 (row 1), A111529 (row 2), A111530 (row 3), A111532 (row 5), A111533 (row 6), A111534 (diagonal).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n-Sum[T[n, j]*T[n-1, k-j], {j, 1, k-1}]];
    a[n_] := T[4, n];
    a /@ Range[0, 19] (* Jean-François Alcover, Oct 01 2019 *)
  • PARI
    {a(n)=if(n<0,0,if(n==0,1, (n/4)*polcoeff(log(sum(m=0,n,(m+3)!/3!*x^m) +x*O(x^n)),n)))}
    for(n=0,20,print1(a(n),", "))

Formula

G.f.: (1/4)*log(Sum_{n>=0} (n+3)!/3!*x^n) = Sum_{n>=1} a(n)*x^n/n.
G.f.: A(x) = 1/(1 + 4*x - 5*x/(1 + 5*x - 6*x/(1 + 6*x - ... (continued fraction).
a(n) = Sum_{k=0..n} 4^(n-k)*A089949(n,k). - Philippe Deléham, Oct 16 2006
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k-1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
G.f.: W(0)/4 + 3/4, where W(k) = 1 - x*(k+4)/( x*(k+4) - 1/(1 - x*(k+2)/( x*(k+2) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
a(n) ~ n! * n^4/24 * (1 + 2/n - 5/n^2 - 30/n^3 - 184/n^4 - 1664/n^5 - 18688/n^6 - 245120/n^7 - 3641280/n^8 - 60090368/n^9 - 1086985152/n^10). - Vaclav Kotesovec, Jul 27 2015
From Peter Bala, May 25 2017: (Start)
O.g.f. A(x) = ( Sum_{n >= 0} (n+4)!/4!*x^n ) / ( Sum_{n >= 0} (n+3)!/3!*x^n ).
1/(1 - 4*x*A(x)) = Sum_{n >= 0} (n+3)!/3!*x^n. Cf. A001715.
A(x)/(1 - 4*x*A(x)) = Sum_{n >= 0} (n+4)!/4!*x^n. Cf. A001720.
A(x) satisfies the Riccati equation x^2*A'(x) + 4*x*A^2(x) - (1 + 3*x)*A(x) + 1 = 0.
G.f. as an S-fraction: A(x) = 1/(1 - x/(1 - 5*x/(1 - 2*x/(1 - 6*x/(1 - 3*x/(1 - 7*x/(1 - ... - n*x/(1 - (n+4)*x/(1 - ... ))))))))), by Stokes 1982.
A(x) = 1/(1 + 4*x - 5*x/(1 - x/(1 - 6*x/(1 - 2*x/(1 - 7*x/(1 - 3*x/(1 - ... - (n + 4)*x/(1 - n*x/(1 - ... ))))))))). (End)

A111532 Row 5 of table A111528.

Original entry on oeis.org

1, 1, 7, 61, 619, 7045, 87955, 1187845, 17192275, 264940405, 4326439075, 74593075525, 1353928981075, 25809901069525, 515683999204675, 10779677853137125, 235366439343773875, 5359766538695291125
Offset: 0

Views

Author

Paul D. Hanna, Aug 06 2005

Keywords

Examples

			(1/5)*(log(1 + 5*x + 30*x^2 + 210*x^3 + ... + (n+4)!/4!)*x^n + ...)
= x + 7/2*x^2 + 61/3*x^3 + 619/4*x^4 + 7045/5*x^5 + ...
		

Crossrefs

Cf: A111528 (table), A003319 (row 1), A111529 (row 2), A111530 (row 3), A111531 (row 4), A111533 (row 6), A111534 (diagonal).

Programs

  • Mathematica
    m = 18; (-1/(5x)) ContinuedFractionK[-i x, 1 + i x, {i, 5, m+4}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 02 2019 *)
  • PARI
    {a(n)=if(n<0,0,if(n==0,1, (n/5)*polcoeff(log(sum(m=0,n,(m+4)!/4!*x^m) + x*O(x^n)),n)))} \\ fixed by Vaclav Kotesovec, Jul 27 2015

Formula

G.f.: (1/5)*log(Sum_{n>=0} (n+4)!/4!*x^n) = Sum_{n>=1} a(n)*x^n/n.
G.f.: 1/(1 + 5*x - 6*x/(1 + 6*x - 7*x/(1 + 7*x - ... (continued fraction).
a(n) = Sum_{k=0..n} 5^(n-k)*A089949(n,k). - Philippe Deléham, Oct 16 2006
G.f.: (4 + 1/Q(0))/5, where Q(k) = 1 - 3*x + k*x - x*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 04 2013
a(n) ~ n! * n^5/5! * (1 + 5/n - 55/n^3 - 356/n^4 - 3095/n^5 - 35225/n^6 - 475000/n^7 - 7293775/n^8 - 124710375/n^9 - 2339428250/n^10). - Vaclav Kotesovec, Jul 27 2015
From Peter Bala, May 25 2017: (Start)
O.g.f.: A(x) = ( Sum_{n >= 0} (n+5)!/5!*x^n ) / ( Sum_{n >= 0} (n+4)!/4!*x^n ).
1/(1 - 5*x*A(x)) = Sum_{n >= 0} (n+4)!/4!*x^n. Cf. A001720.
A(x)/(1 - 5*x*A(x)) = Sum_{n >= 0} (n+5)!/5!*x^n. Cf. A001725.
A(x) satisfies the Riccati equation x^2*A'(x) + 5*x*A^2(x) - (1 + 4*x)*A(x) + 1 = 0.
G.f. as an S-fraction: A(x) = 1/(1 - x/(1 - 6*x/(1 - 2*x/(1 - 7*x/(1 - 3*x/(1 - 8*x/(1 - ... - n*x/(1 - (n+5)*x/(1 - ... ))))))))), by Stokes 1982.
A(x) = 1/(1 + 5*x - 6*x/(1 - x/(1 - 7*x/(1 - 2*x/(1 - 8*x/(1 - 3*x/(1 - ... - (n + 5)*x/(1 - n*x/(1 - ... ))))))))). (End)

A111533 Row 6 of table A111528.

Original entry on oeis.org

1, 1, 8, 78, 876, 10956, 149472, 2195208, 34398288, 571525200, 10022997888, 184897670112, 3578224662720, 72486450479808, 1534267158087168, 33877135427154048, 779208751651730688, 18645519786163266816
Offset: 0

Views

Author

Paul D. Hanna, Aug 06 2005

Keywords

Examples

			(1/6)*(log(1 + 6*x + 42*x^2 + 336*x^3 + ... + (n+5)!/5!)*x^n + ...)
= x + 8/2*x^2 + 78/3*x^3 + 876/4*x^4 + 10956/5*x^5 + ...
		

Crossrefs

Cf: A111528 (table), A003319 (row 1), A111529 (row 2), A111530 (row 3), A111531 (row 4), A111532 (row 5), A111534 (diagonal).

Programs

  • Mathematica
    m = 18; (-1/(6x)) ContinuedFractionK[-i x, 1 + i x, {i, 6, m+5}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 02 2019 *)
  • PARI
    {a(n)=if(n<0,0,if(n==0,1, (n/6)*polcoeff(log(sum(m=0,n,(m+5)!/5!*x^m) + x*O(x^n)),n)))} \\ fixed by Vaclav Kotesovec, Jul 27 2015

Formula

G.f.: (1/6)*log(Sum_{n>=0} (n+5)!/5!*x^n) = Sum_{n>=1} a(n)*x^n/n.
G.f.: 1/(1 + 6*x - 7*x/(1 + 7*x - 8*x/(1 + 8*x -... (continued fraction).
a(n) = Sum_{k=0..n} 6^(n-k)*A089949(n,k). - Philippe Deléham, Oct 16 2006
G.f.: (5 + 1/Q(0))/6, where Q(k) = 1 - 4*x + k*x - x*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 04 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k-2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
a(n) ~ n! * n^6/6! * (1 + 9/n + 19/n^2 - 69/n^3 - 704/n^4 - 5880/n^5 - 65736/n^6 - 896832/n^7 - 14068080/n^8 - 246800304/n^9 - 4760585136/n^10). - Vaclav Kotesovec, Jul 27 2015
From Peter Bala, May 25 2017: (Start)
O.g.f.: A(x) = ( Sum_{n >= 0} (n+6)!/6!*x^n ) / ( Sum_{n >= 0} (n+5)!/5!*x^n ).
1/(1 - 6*x*A(x)) = Sum_{n >= 0} (n+5)!/5!*x^n. Cf. A001725.
A(x)/(1 - 6*x*A(x)) = Sum_{n >= 0} (n+6)!/6!*x^n. Cf. A001730.
A(x) satisfies the Riccati equation x^2*A'(x) + 6*x*A^2(x) - (1 + 5*x)*A(x) + 1 = 0.
G.f. as an S-fraction: A(x) = 1/(1 - x/(1 - 7*x/(1 - 2*x/(1 - 8*x/(1 - 3*x/(1 - 9*x/(1 - ... - n*x/(1 - (n+6)*x/(1 - ... ))))))))), by Stokes 1982.
A(x) = 1/(1 + 6*x - 7*x/(1 - x/(1 - 8*x/(1 - 2*x/(1 - 9*x/(1 - 3*x/(1 - ... - (n + 6)*x/(1 - n*x/(1 - ... ))))))))). (End)

A107716 Inverse INVERT transform of triple factorial numbers (3*n-2)!!! (A007559).

Original entry on oeis.org

1, 3, 21, 219, 2973, 49323, 964173, 21680571, 551173053, 15633866379, 489583062381, 16780438408539, 624935780160285, 25131869565110571, 1085528359404039117, 50124679063548821499, 2464153823558024331645, 128500643820213560377803, 7085182933810282490250285
Offset: 0

Views

Author

Paul D. Hanna, May 23 2005

Keywords

Comments

Column 0 of triangle A107717.

Examples

			The triple factorials begin: {1,4,28,280,3640,58240,...}; thus the inverse INVERT transform of the triple factorials can be calculated by the g.f.s:
1/(1 + x + 4*x^2 + 28*x^3 + 280*x^4 + 3640*x^5 + 58240*x^6 +...) = (1 - x - 3*x^2 - 21*x^3 - 219*x^4 - 2973*x^5 - 49323*x^6 -...).
		

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):=  `if`(n=0, 1, b(n-1)*(3*n+1)) end:
    a:= proc(n) a(n):= -`if`(n<0, 1, add(a(n-i-1)*b(i), i=0..n)) end:
    seq(a(n), n=0..20);  # Alois P. Heinz, May 23 2017
  • Mathematica
    m = 20; f3[n_] := Product[3k+1, {k, 0, n-1}]; A[x_] = 1-1/(1+Sum[f3[n] x^n, {n, 1, m}]); CoefficientList[A[x] + O[x]^m, x] // Rest (* Jean-François Alcover, May 01 2019 *)
  • PARI
    a(n)=polcoeff(1-(1+sum(k=1,n+1,prod(j=0,k-1,3*j+1)*x^k)+x^2*O(x^n))^-1,n+1)

Formula

G.f.: A(x) = 1 - 1/[1 + Sum_{n>=1} (3*n-2)!!! * x^n ] where (3*n-2)!!! = Product_{k=0..n-1} (3*k+1).
a(n) = Sum_{k, 0<=k<=n} A089949(n, k)*3^k . - Philippe Deléham, Aug 15 2005
G.f.: (1 - Q(0))/x where Q(k) = 1 - x*(3*k+1)/(1 - x*(3*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
G.f.: 1/x - 2 - 2/x/G(0), where G(k)= 1 + 1/(1 - x*(3*k+3)/(x*(3*k+4) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
From Peter Bala, May 23 2017: (Start)
G.f. A(x) = 1/(1 + x - 4*x/(1 + 4*x - 7*x/(1 + 7*x - 10*x/(1 + 10*x - ...)))).
A(x) = 1/(1 + x - 4*x/(1 - 3*x/(1 - 7*x/(1 - 6*x/(1 - 10*x/(1 - 9*x - ...)))))). (End)
Showing 1-9 of 9 results.