Original entry on oeis.org
1, 4, 20, 120, 840, 6720, 60480, 604800, 6652800, 79833600, 1037836800, 14529715200, 217945728000, 3487131648000, 59281238016000, 1067062284288000, 20274183401472000, 405483668029440000, 8515157028618240000, 187333454629601280000, 4308669456480829440000
Offset: 3
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 3..200
- Somaya Barati, Beáta Bényi, Abbas Jafarzadeh, and Daniel Yaqubi, Mixed restricted Stirling numbers, arXiv:1812.02955 [math.CO], 2018.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 263.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
- Index entries for sequences related to factorial numbers.
- Index to divisibility sequences.
-
a001715 = (flip div 6) . a000142 -- Reinhard Zumkeller, Aug 31 2014
-
[Factorial(n)/6: n in [3..30]]; // Vincenzo Librandi, Jun 20 2011
-
f := proc(n) n!/6; end;
BB:= [S, {S = Prod(Z,Z,C), C = Union(B,Z,Z), B = Prod(Z,C)}, labelled]: seq(combstruct[count](BB, size=n)/12, n=3..20); # Zerinvary Lajos, Jun 19 2008
G(x):=1/(1-x)^4: f[0]:=G(x): for n from 1 to 18 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..16); # Zerinvary Lajos, Apr 01 2009
-
a[n_]:=n!/6; (*Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
Range[3,30]!/6 (* Harvey P. Dale, Aug 12 2012 *)
-
a(n)=n!/6 \\ Charles R Greathouse IV, Jan 12 2012
A111528
Square table, read by antidiagonals, where the g.f. for row n+1 is generated by: x*R_{n+1}(x) = (1+n*x - 1/R_n(x))/(n+1) with R_0(x) = Sum_{n>=0} n!*x^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 13, 24, 1, 1, 5, 22, 71, 120, 1, 1, 6, 33, 148, 461, 720, 1, 1, 7, 46, 261, 1156, 3447, 5040, 1, 1, 8, 61, 416, 2361, 10192, 29093, 40320, 1, 1, 9, 78, 619, 4256, 23805, 99688, 273343, 362880, 1, 1, 10, 97, 876, 7045, 48096, 263313
Offset: 0
Table begins:
1, 1, 2, 6, 24, 120, 720, 5040, 40320, ...
1, 1, 3, 13, 71, 461, 3447, 29093, 273343, ...
1, 1, 4, 22, 148, 1156, 10192, 99688, 1069168, ...
1, 1, 5, 33, 261, 2361, 23805, 263313, 3161781, ...
1, 1, 6, 46, 416, 4256, 48096, 591536, 7840576, ...
1, 1, 7, 61, 619, 7045, 87955, 1187845, 17192275, ...
1, 1, 8, 78, 876, 10956, 149472, 2195208, 34398288, ...
1, 1, 9, 97, 1193, 16241, 240057, 3804353, 64092553, ...
1, 1, 10, 118, 1576, 23176, 368560, 6262768, 112784896, ...
Rows are generated by logarithms of factorial series:
log(1 + x + 2*x^2 + 6*x^3 + 24*x^4 + ... n!*x^n + ...) = x + (3/2)*x^2 + (13/3)*x^3 + (71/4)*x^4 + (461/5)*x^5 + ...
(1/2)*log(1 + 2*x + 6*x^2 + ... + ((n+1)!/1!)*x^n + ...) = x + (4/2)*x^2 + (22/3)*x^3 + (148/4)*x^4 + (1156/5)*x^5 + ...
(1/3)*log(1 + 3*x + 12*x^2 + 60*x^3 + ... + ((n+2)!/2!)*x^n + ...) = x + (5/2)*x^2 + (33/3)*x^3 + (261/4)*x^4 + (2361/5)*x^5 +...
G.f. of row n may be expressed by the continued fraction:
R_n(x) = 1/(1+n*x - (n+1)*x/(1+(n+1)*x - (n+2)*x/(1+(n+2)*x -...
or recursively by: R_n(x) = 1/(1+n*x - (n+1)*x*R_{n+1}(x)).
-
T := (n, k) -> coeff(series(hypergeom([n+1, 1], [], x)/hypergeom([n, 1], [], x), x, 21), x, k):
#display as a sequence
seq(seq(T(n-k, k), k = 0..n), n = 0..10);
# display as a square array
seq(print(seq(T(n, k), k = 0..10)), n = 0..10); # Peter Bala, Jul 16 2022
-
T[n_, k_] := T[n, k] = Which[n < 0 || k < 0, 0, k == 0 || k == 1, 1, n == 0, k!, True, (T[n - 1, k + 1] - T[n - 1, k])/n - Sum[T[n, j]*T[n - 1, k - j], {j, 1, k - 1}]]; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2018 *)
-
{T(n,k)=if(n<0||k<0,0,if(k==0||k==1,1,if(n==0,k!, (T(n-1,k+1)-T(n-1,k))/n-sum(j=1,k-1,T(n,j)*T(n-1,k-j)))))}
for(n=0,10,for(k=0,10,print1(T(n,k),", ")); print(""))
-
{T(n,k)=if(n<0||k<0,0,if(k==0,1,if(n==0,k!, k/n*polcoeff(log(sum(m=0,k,(n-1+m)!/(n-1)!*x^m)),k))))}
for(n=0,10,for(k=0,10,print1(T(n,k),", ")); print(""))
Original entry on oeis.org
1, 1, 4, 22, 148, 1156, 10192, 99688, 1069168, 12468208, 157071424, 2126386912, 30797423680, 475378906432, 7793485765888, 135284756985472, 2479535560687360, 47860569736036096, 970606394944476160, 20635652201785613824, 459015456156148876288, 10662527360021306782720
Offset: 0
(1/2)*log(1 + 2*x + 6*x^2 + ... + ((n+1)!/1!)*x^n + ...)
= x + (4/2)*x^2 + (22/3)*x^3 + (148/4)*x^4 + (1156/5)*x^5 + ...
- Robert Israel, Table of n, a(n) for n = 0..410
- Paul Barry, A note on number triangles that are almost their own production matrix, arXiv:1804.06801 [math.CO], 2018.
- Richard J. Martin and Michael J. Kearney, Integral representation of certain combinatorial recurrences, Combinatorica: 35:3 (2015), 309-315.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
-
N:= 30: # to get a(0) to a(N)
g:= 1/2*log(add((n+1)!*x^n,n=0..N+1)):
S:= series(g,x,N+1);
1, seq(j*coeff(S,x,j),j=0..N); # Robert Israel, Jul 10 2015
-
T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n - Sum[T[n, j] T[n-1, k-j], {j, 1, k-1}]];
a[n_] := T[2, n];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 09 2018 *)
-
{a(n)=if(n<0,0,if(n==0,1, (n/2)*polcoeff(log(sum(m=0,n,(m+1)!/1!*x^m)),n)))}
Original entry on oeis.org
1, 1, 6, 46, 416, 4256, 48096, 591536, 7840576, 111226816, 1680157056, 26918720896, 455971214336, 8143926373376, 153013563734016, 3017996904928256, 62369444355076096, 1348096649995841536, 30426167700424728576, 715935203128235401216
Offset: 0
(1/4)*(log(1 + 4*x + 20*x^2 + 120*x^3 + ... + (n+3)!/3!)*x^n + ...)
= x + 6/2*x^2 + 46/3*x^3 + 416/4*x^4 + 4256/5*x^5 + ...
-
T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n-Sum[T[n, j]*T[n-1, k-j], {j, 1, k-1}]];
a[n_] := T[4, n];
a /@ Range[0, 19] (* Jean-François Alcover, Oct 01 2019 *)
-
{a(n)=if(n<0,0,if(n==0,1, (n/4)*polcoeff(log(sum(m=0,n,(m+3)!/3!*x^m) +x*O(x^n)),n)))}
for(n=0,20,print1(a(n),", "))
Original entry on oeis.org
1, 1, 7, 61, 619, 7045, 87955, 1187845, 17192275, 264940405, 4326439075, 74593075525, 1353928981075, 25809901069525, 515683999204675, 10779677853137125, 235366439343773875, 5359766538695291125
Offset: 0
(1/5)*(log(1 + 5*x + 30*x^2 + 210*x^3 + ... + (n+4)!/4!)*x^n + ...)
= x + 7/2*x^2 + 61/3*x^3 + 619/4*x^4 + 7045/5*x^5 + ...
-
m = 18; (-1/(5x)) ContinuedFractionK[-i x, 1 + i x, {i, 5, m+4}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 02 2019 *)
-
{a(n)=if(n<0,0,if(n==0,1, (n/5)*polcoeff(log(sum(m=0,n,(m+4)!/4!*x^m) + x*O(x^n)),n)))} \\ fixed by Vaclav Kotesovec, Jul 27 2015
Original entry on oeis.org
1, 1, 8, 78, 876, 10956, 149472, 2195208, 34398288, 571525200, 10022997888, 184897670112, 3578224662720, 72486450479808, 1534267158087168, 33877135427154048, 779208751651730688, 18645519786163266816
Offset: 0
(1/6)*(log(1 + 6*x + 42*x^2 + 336*x^3 + ... + (n+5)!/5!)*x^n + ...)
= x + 8/2*x^2 + 78/3*x^3 + 876/4*x^4 + 10956/5*x^5 + ...
-
m = 18; (-1/(6x)) ContinuedFractionK[-i x, 1 + i x, {i, 6, m+5}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 02 2019 *)
-
{a(n)=if(n<0,0,if(n==0,1, (n/6)*polcoeff(log(sum(m=0,n,(m+5)!/5!*x^m) + x*O(x^n)),n)))} \\ fixed by Vaclav Kotesovec, Jul 27 2015
A089949
Triangle T(n,k), read by rows, given by [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 12, 34, 24, 0, 1, 20, 110, 210, 120, 0, 1, 30, 270, 974, 1452, 720, 0, 1, 42, 560, 3248, 8946, 11256, 5040, 0, 1, 56, 1036, 8792, 38338, 87504, 97296, 40320, 0, 1, 72, 1764, 20580, 129834, 463050, 920184, 930960, 362880
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 1, 6, 6;
0, 1, 12, 34, 24;
0, 1, 20, 110, 210, 120;
0, 1, 30, 270, 974, 1452, 720; ...
-
m = 10;
gf = (1/x)*(1-1/(1+Sum[Product[(1+k*y), {k, 0, n-1}]*x^n, {n, 1, m}]));
CoefficientList[#, y]& /@ CoefficientList[gf + O[x]^m, x] // Flatten (* Jean-François Alcover, May 11 2019 *)
-
T(n,k)=if(nPaul D. Hanna, Aug 16 2005
A111544
Triangular matrix T, read by rows, that satisfies: SHIFT_LEFT(column 0 of T^p) = p*(column p+3 of T), or [T^p](m,0) = p*T(p+m,p+3) for all m>=1 and p>=-3.
Original entry on oeis.org
1, 1, 1, 5, 2, 1, 33, 9, 3, 1, 261, 57, 15, 4, 1, 2361, 441, 99, 23, 5, 1, 23805, 3933, 783, 165, 33, 6, 1, 263313, 39249, 7083, 1383, 261, 45, 7, 1, 3161781, 430677, 71415, 13083, 2361, 393, 59, 8, 1, 40907241, 5137641, 789939, 136863, 23805, 3861, 567, 75, 9, 1
Offset: 0
SHIFT_LEFT(column 0 of T^-3) = -3*(column 0 of T);
SHIFT_LEFT(column 0 of T^-2) = -2*(column 1 of T);
SHIFT_LEFT(column 0 of T^-1) = -1*(column 2 of T);
SHIFT_LEFT(column 0 of log(T)) = column 3 of T;
SHIFT_LEFT(column 0 of T^1) = 1*(column 4 of T);
where SHIFT_LEFT of column sequence shifts 1 place left.
Triangle T begins:
1;
1,1;
5,2,1;
33,9,3,1;
261,57,15,4,1;
2361,441,99,23,5,1;
23805,3933,783,165,33,6,1;
263313,39249,7083,1383,261,45,7,1;
3161781,430677,71415,13083,2361,393,59,8,1; ...
After initial term, column 2 is 3 times column 0.
Matrix inverse T^-1 = A111548 starts:
1;
-1,1;
-3,-2,1;
-15,-3,-3,1;
-99,-15,-3,-4,1;
-783,-99,-15,-3,-5,1;
-7083,-783,-99,-15,-3,-6,1; ...
where columns are all equal after initial terms;
compare columns of T^-1 to column 2 of T.
Matrix logarithm log(T) = A111549 is:
0;
1,0;
4,2,0;
23,6,3,0;
165,32,9,4,0;
1383,222,47,13,5,0;
13083,1824,321,70,18,6,0; ...
compare column 0 of log(T) to column 3 of T.
-
T[n_, k_] := T[n, k] = If[nJean-François Alcover, Aug 09 2018, from PARI *)
-
T(n,k)=if(n
Original entry on oeis.org
1, 3, 15, 99, 783, 7083, 71415, 789939, 9485343, 122721723, 1701224775, 25156450179, 395362560303, 6583219735563, 115817825451735, 2147443419579219, 41868118883289663, 856527397513863003, 18350158259899381095, 410942059850878349859, 9603217302778609785423
Offset: 0
-
a111546 n = a111546_list !! n
a111546_list = 1 : f 2 [1] where
f v ws@(w:_) = y : f (v + 1) (y : ws) where
y = v * w + (sum $ zipWith (*) ws $ reverse ws)
-- Reinhard Zumkeller, Jan 24 2014
-
{a(n)=if(n<0,0,(matrix(n+3,n+3,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+2)!/2!*x^i)),m-j-1))))^-1)[n+3,3])}
-
a(n)=(1/2)*((n+3)!-3*(n+2)!-sum(k=0,n-2,(n+1-k)!*a(k+1))) \\ Formula by Groux Roland, implemented & checked to conform to given terms by M. F. Hasler, Dec 12 2010
Original entry on oeis.org
1, 1, 4, 33, 416, 7045, 149472, 3804353, 112784896, 3812791581, 144643185600, 6081135558817, 280510445260800, 14080668974435141, 763890295406672896, 44529851124925034625, 2775373003913373810688, 184147301185264051623181
Offset: 0
-
T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n - Sum[T[n, j] T[n-1, k-j], {j, 1, k-1}]];
a[n_] := T[n, n];
Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 09 2018 *)
-
{a(n)=if(n<0,0,if(n==0,1, polcoeff(log(sum(m=0,n,(n-1+m)!/(n-1)!*x^m)),n)))}
Showing 1-10 of 13 results.
Comments