cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A124849 Numbers k such that 7k + 3 and 3k + 7 are primes.

Original entry on oeis.org

0, 2, 4, 8, 10, 22, 32, 34, 40, 44, 50, 52, 58, 68, 74, 88, 92, 110, 122, 134, 142, 160, 164, 178, 188, 208, 212, 242, 250, 260, 268, 272, 304, 320, 334, 344, 352, 370, 374, 382, 388, 398, 424, 428, 440, 458, 464, 472, 484, 494, 508, 520, 524, 538, 550, 554, 572
Offset: 1

Views

Author

Zak Seidov, Nov 10 2006

Keywords

Comments

Intersection of A089033 and A089953.

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(7*n+3) and IsPrime(3*n+7)] // Vincenzo Librandi, Mar 26 2010
  • Mathematica
    Select[Range[0,600],AllTrue[{7#+3,3#+7},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 27 2018 *)

A124850 Primes p=n/2 such that 7n+3 and 3n+7 are primes.

Original entry on oeis.org

2, 5, 11, 17, 29, 37, 61, 67, 71, 89, 167, 191, 199, 229, 269, 277, 311, 331, 337, 347, 379, 389, 419, 431, 509, 541, 577, 587, 617, 631, 691, 709, 757, 797, 809, 821, 929, 941, 977, 991, 1069, 1091, 1117, 1129, 1217, 1277, 1279, 1289, 1291, 1367, 1439
Offset: 1

Views

Author

Zak Seidov, Nov 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[250]],AllTrue[{14#+3,6#+7},PrimeQ]&] (* Harvey P. Dale, Mar 10 2022 *)

A181766 Numbers k such that 3*k + 7 is not prime.

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 26, 27, 28, 29, 31, 33, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 51, 53, 54, 55, 56, 57, 59, 60, 61, 63, 65, 66, 67, 69, 70, 71, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 91, 93, 94, 95, 96, 97, 98
Offset: 1

Views

Author

Keywords

Comments

One less than the associated value in A153282, two less than A153309. - R. J. Mathar, Jan 05 2011

Examples

			Distribution of the even terms in the following triangular array:
*;
*, 6;
*, *,14;
*, *,*,*;
*,16,*,*,38;
*,*,28,*,*,54;
*,*, *,*,*, *,*;
*,26,*,*,60,*,*,94;
*,*,42,*,*,80,*,*,118;
*,*,*, *,*,*, *,*, *, *;
*,36,*,*,82,*,*,128,*,*,174;
*,*,56,*,*,106,*,*,156,*,*,206; etc.
where * marks the non-integer values of (4*h*k + 2*k + 2*h - 6)/3 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
		

Crossrefs

Cf. A089953 (3*n+7 is a prime).

Programs

  • Magma
    [n: n in [0..100] | not IsPrime(3*n + 7)]; // Vincenzo Librandi, Oct 15 2012
  • Mathematica
    Select[Range[0, 100], !PrimeQ[3 # + 7] &] (* Vincenzo Librandi, Oct 15 2012 *)
Showing 1-3 of 3 results.