A090081 Cube root-smooth numbers: numbers k whose largest prime factor does not exceed the cube root of k.
1, 8, 16, 27, 32, 36, 48, 54, 64, 72, 81, 96, 108, 125, 128, 135, 144, 150, 160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 343, 350, 360, 375, 378, 384, 392, 400, 405, 420, 432, 441, 448, 450, 480, 486, 490, 500, 504, 512, 525
Offset: 1
Examples
378 = 2 * 3^3 * 7 is a term of the sequence since 7 < 7.23... = 378^(1/3).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= n -> evalb(max(seq(f[1],f=ifactors(n)[2]))^3 <= n): select(filter, [$1..1000]); # Robert Israel, Jul 14 2014
-
Mathematica
ffi[x_] := Flatten[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; lf[x_] := Length[FactorInteger[x]]; ma[x_] := Max[ba[x]]; Do[If[ !Greater[ma[n], gy=n^(1/3)//N]&&!PrimeQ[n], Print[n(*, {gy, ma[n]}*)]], {n, 1, 1000}] Select[Range[1000], (FactorInteger[#][[-1,1]])^3 <= # &] (* T. D. Noe, Sep 14 2011 *) Select[Range[1000],FactorInteger[#][[-1,1]]<=CubeRoot[#]&] (* Harvey P. Dale, Jun 30 2025 *)
-
PARI
is(n)=my(f=factor(n)[,1]);f[#f]^3<=n \\ Charles R Greathouse IV, Sep 14 2011
-
Python
from sympy import primefactors def ok(n): if n==1 or max(primefactors(n))**3<=n: return True else: return False print([n for n in range(1, 1001) if ok(n)]) # Indranil Ghosh, Apr 23 2017
Formula
Solutions to A006530(n) <= n^(1/3).
Comments