cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090081 Cube root-smooth numbers: numbers k whose largest prime factor does not exceed the cube root of k.

Original entry on oeis.org

1, 8, 16, 27, 32, 36, 48, 54, 64, 72, 81, 96, 108, 125, 128, 135, 144, 150, 160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 343, 350, 360, 375, 378, 384, 392, 400, 405, 420, 432, 441, 448, 450, 480, 486, 490, 500, 504, 512, 525
Offset: 1

Views

Author

Labos Elemer, Nov 21 2003

Keywords

Comments

What is the asymptotic growth of this sequence?
Answer: a(n) ~ k*n, where k = 1/A175475. That is, about 4.8% of numbers are in this sequence. - Charles R Greathouse IV, Jul 14 2014

Examples

			378 = 2 * 3^3 * 7 is a term of the sequence since 7 < 7.23... = 378^(1/3).
		

Crossrefs

Programs

  • Maple
    filter:= n ->
    evalb(max(seq(f[1],f=ifactors(n)[2]))^3 <= n):
    select(filter, [$1..1000]); # Robert Israel, Jul 14 2014
  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; lf[x_] := Length[FactorInteger[x]]; ma[x_] := Max[ba[x]]; Do[If[ !Greater[ma[n], gy=n^(1/3)//N]&&!PrimeQ[n], Print[n(*, {gy, ma[n]}*)]], {n, 1, 1000}]
    Select[Range[1000], (FactorInteger[#][[-1,1]])^3 <= # &] (* T. D. Noe, Sep 14 2011 *)
    Select[Range[1000],FactorInteger[#][[-1,1]]<=CubeRoot[#]&] (* Harvey P. Dale, Jun 30 2025 *)
  • PARI
    is(n)=my(f=factor(n)[,1]);f[#f]^3<=n \\ Charles R Greathouse IV, Sep 14 2011
    
  • Python
    from sympy import primefactors
    def ok(n):
        if n==1 or max(primefactors(n))**3<=n: return True
        else: return False
    print([n for n in range(1, 1001) if ok(n)]) # Indranil Ghosh, Apr 23 2017

Formula

Solutions to A006530(n) <= n^(1/3).