cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A090102 Leading prime in each set of 7 arising in A090101.

Original entry on oeis.org

11, 516811, 20402952601, 196260616589761, 239536538008051, 426813020692661, 2681027962124411, 3605832801512401, 6450361508166761, 10392841156929031, 13162202092936411, 13655671002023851, 14501847401205811
Offset: 1

Views

Author

Labos Elemer, Dec 15 2003

Keywords

Examples

			a[15] = 69981018761651281 is first of following chain: {69981018761651281, 69981019944706811, 69981021127762351, 69981022310817901, 69981023493873461, 69981024676929031, 69981025859984611} = {P[k], P[k+1], ..., P[k+6]}, where k = A090101[15] and P[x] = 5x^2+5x+1. See A090562, A090563.
		

Crossrefs

Programs

  • Mathematica
    po[x_] := 5*x^2+5*x+1 Do[s=po[n];s0=po[n];s1=po[n+1];s2=po[n+2];s3=po[n+3];s4=po[n+4]; s5=po[n+5];s6=po[n+6];If[IntegerQ[n/100000], Print[{n}]]; If[PrimeQ[s0]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s3]&&PrimeQ[s4]&&PrimeQ[s5] &&PrimeQ[s6], Print[s0]], {n, 1, 120000000}]

A090107 Values of k such that {P(k), P(k+1), ..., P(k+9)} are all prime numbers, where P(k) = k^2 - 79*k + 1601.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 106
Offset: 1

Views

Author

Labos Elemer, Dec 29 2003

Keywords

Comments

a(n) is the first argument providing 10 "polynomially consecutive" primes with respect to the polynomial x^2 - 79*x + 1601 described by Escott in 1899.

Examples

			k = 106 provides a chain of 10 "polynomially consecutive" primes as follows: {4463, 4597, 4733, 4871, 5011, 5153, 5297, 5443, 5591, 5741}.
		

Crossrefs

Programs

  • Mathematica
    Position[Times @@@ Partition[Table[Boole@PrimeQ[k^2 - 79*k + 1601], {k, 1, 1000}], 10, 1], 1] // Flatten (* Amiram Eldar, Sep 27 2024 *)
  • PARI
    isp(x) = isprime(x^2 - 79*x + 1601);
    lista(kmax) = {my(v = vector(10, k, isp(k))); for(k = 11, kmax, if(vecprod(v) == 1, print1(k - 10, ", ")); v = concat(vecextract(v, "^1"), isp(k)));} \\ Amiram Eldar, Sep 27 2024

Extensions

Data corrected by Amiram Eldar, Sep 27 2024

A090108 Values of k such that {P(k), P(k+1), ..., P(k+8)} are all prime numbers, whereP(k) = k^2 - 79*k + 1601.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 106
Offset: 1

Views

Author

Labos Elemer, Dec 29 2003

Keywords

Comments

a(n) is the first argument providing 9 "polynomially consecutive" primes with respect to the polynomial x^2 - 79*x + 1601 described by Escott in 1899.

Examples

			k = 263 provides a chain of 9 "polynomially consecutive" primes as follows: {49993, 50441, 50891, 51343, 51797, 52253, 52711, 53171, 53633}.
		

Crossrefs

Programs

  • Mathematica
    Position[Times @@@ Partition[Table[Boole@PrimeQ[k^2 - 79*k + 1601], {k, 1, 1000}], 9, 1], 1] // Flatten (* Amiram Eldar, Sep 27 2024 *)
  • PARI
    isp(x) = isprime(x^2 - 79*x + 1601);
    lista(kmax) = {my(v = vector(9, k, isp(k))); for(k = 10, kmax, if(vecprod(v) == 1, print1(k - 9, ", ")); v = concat(vecextract(v, "^1"), isp(k)));} \\ Amiram Eldar, Sep 27 2024

A090109 Values of k such that {P(k), P(k+1), ..., P(k+10)} are all prime numbers, where P(k) = k^2 - 79*k + 1601.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 259, 260, 261
Offset: 1

Views

Author

Labos Elemer, Dec 29 2003

Keywords

Comments

a(n) is the first argument providing 11 "polynomially consecutive" primes with respect to the polynomial x^2 - 79*x + 1601 described by Escott in 1899.

Examples

			k = 1 provides the following non-monotonic (!) chain of 11 "polynomially consecutive" primes as follows: {1523, 1447, 1373, 1301, 1231, 1163, 1097, 1033, 971, 911, 853}.
		

Crossrefs

Programs

  • Mathematica
    Position[Times @@@ Partition[Table[Boole@PrimeQ[k^2 - 79*k + 1601], {k, 1, 1000}], 11, 1], 1] // Flatten (* Amiram Eldar, Sep 27 2024 *)
  • PARI
    isp(x) = isprime(x^2 - 79*x + 1601);
    lista(kmax) = {my(v = vector(11, k, isp(k))); for(k = 12, kmax, if(vecprod(v) == 1, print1(k - 11, ", ")); v = concat(vecextract(v, "^1"), isp(k)));} \\ Amiram Eldar, Sep 27 2024

Extensions

Data corrected by Amiram Eldar, Sep 27 2024

A090110 Values of k such that {P(k), P(k+1), ..., P(k+7)} are all prime numbers, where P(k) = 4*k^2 - 154*k + 1523.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 66, 129, 130, 328, 1619, 7509, 29714, 45905, 447588, 509862, 1022565, 1102373, 1388125, 1665379, 1762387, 1786292, 2111602, 2962834, 3391838
Offset: 1

Views

Author

Labos Elemer, Dec 30 2003

Keywords

Comments

The terms are arguments introducing a sequence of 8 polynomially consecutive primes with respect to 4*x^2 - 154*x + 1523, a polynomial communicated by Rivera (2003).

Examples

			k = 1 provides {1373, 1231, 1097, 971, 853, 743, 641, 547}, an 8-chain of primes.
		

Crossrefs

Programs

  • Mathematica
    okQ[x_] := And@@PrimeQ[Table[4n^2-154n+1523, {n,x,x+7}]];
    Select[Range[ 510000], okQ] (* Harvey P. Dale, May 25 2011 *)
  • PARI
    isp(x) = isprime(4*x^2 - 154*x + 1523);
    lista(kmax) = {my(v = vector(8, k, isp(k))); for(k = 9, kmax, if(vecprod(v) == 1, print1(k - 8, ", ")); v = concat(vecextract(v, "^1"), isp(k)));} \\ Amiram Eldar, Sep 27 2024

Extensions

a(43)-a(51) from Amiram Eldar, Sep 27 2024

A090111 Values of k such that {P(k), P(k+1), ..., P(k+6)} are all prime numbers, where P(k) = 4*k^2 - 154*k + 1523.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 45, 53, 66, 67, 84, 129, 130, 131, 266, 328, 329, 1619, 1620, 2655, 2937, 7509, 7510, 18030, 29283, 29714, 29715, 37630, 42037, 44473, 45905
Offset: 1

Views

Author

Labos Elemer, Dec 30 2003

Keywords

Comments

The terms are arguments providing a sequence of 7 polynomially consecutive primes with respect to 4*x^2 - 154*x + 1523, a polynomial communicated by Rivera (2003).

Examples

			k = 1 provides {1373, 1231, 1097, 971, 853, 743, 641}, a 7-chain of primes.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Position[Partition[Table[If[PrimeQ[4n^2-154n+1523],1,0],{n,46000}],7,1],{1,1,1,1,1,1,1}]] (* Harvey P. Dale, Mar 06 2015 *)
  • PARI
    isp(x) = isprime(4*x^2 - 154*x + 1523);
    lista(kmax) = {my(v = vector(7, k, isp(k))); for(k = 8, kmax, if(vecprod(v) == 1, print1(k - 7, ", ")); v = concat(vecextract(v, "^1"), isp(k)));} \\ Amiram Eldar, Sep 27 2024

A090106 Values of k such that {P(k), P(k+1), ..., P(k+12)} are all prime numbers, where P(k) = k^2 + k + 41.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 219
Offset: 1

Views

Author

Labos Elemer, Dec 22 2003

Keywords

Comments

a(n) is the first argument providing 13 "polynomially consecutive" primes with respect to the polynomial x^2 + x + 41.
a(29) > 5*10^9, if it exists. - Amiram Eldar, Sep 27 2024

Examples

			k = 219: {P(219), ..., P(231)} = {48221, ..., 53633}, i.e., 13 consecutive integer values substituted to P(x) = x^2 + x + 41 polynomial, all provide primes. The "classical case" includes one single 41-chain of PC-primes, see A055561.
		

Crossrefs

Programs

  • Mathematica
    Position[Times @@@ Partition[Table[Boole@PrimeQ[k^2 + k + 41], {k, 1, 1000}], 13, 1], 1] // Flatten (* Amiram Eldar, Sep 27 2024 *)
  • PARI
    isp(x) = isprime(x^2 + x + 41);
    lista(kmax) = {my(v = vector(13, k, isp(k))); for(k = 14, kmax, if(vecprod(v) == 1, print1(k - 13, ", ")); v = concat(vecextract(v, "^1"), isp(k)));} \\ Amiram Eldar, Sep 27 2024

Extensions

2 wrong terms removed by Amiram Eldar, Sep 27 2024
Showing 1-7 of 7 results.