cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A090125 a(n) is the least positive integer such that nextprime(a(n)^n) - prevprime(a(n)^n) = 4.

Original entry on oeis.org

5, 3, 2, 2, 411, 195, 2, 392, 141, 105, 1161, 909, 69, 3243, 171, 370, 1659, 165, 26289, 1065, 8541, 19593, 43521, 1323, 84651, 25767, 25641, 7029, 63009, 693, 231, 957, 2601, 7137, 368265, 14769, 8169, 13071, 23679, 45, 13875, 6693, 136611, 34869, 55725, 4887, 231, 1935, 730071, 10305
Offset: 1

Views

Author

Labos Elemer, Jan 12 2004

Keywords

Examples

			with q-p=4,q,p are primes:
n=1:a(1)=5 because {p=3,a(1)^1=5,q=5};
n=7:a(7)=2 because {p=127,a(7)^7=128, q=131};
n=10:a(10)=105 because {p=c-2,c=a(10)^10=162889462677744140625,q=c+2}
		

Crossrefs

Programs

  • Mathematica
    Table[fla=1;Do[If[((PrimeQ[s=n^k-3]&&PrimeQ[s1=n^k+1]) ||(PrimeQ[s=n^k-2]&&PrimeQ[s1=n^k+2])||(PrimeQ[s=n^k-1] &&PrimeQ[s1=n^k+3]))&&Equal[fla, 1]&&!Equal[n, 1], Print[{n, p, n^k, q, {k}}];fla=0], {n, 1, 1000000}], {k, 1, 60}]
  • PARI
    a(n) = {my(k=1); while (nextprime(k^n+1) - precprime(k^n-1) != 4, k++); k;} \\ Michel Marcus, Sep 03 2019
    
  • PARI
    f(k,r) = ispseudoprime(k-r) && ispseudoprime(k-r+4);
    a(n) = for(k=1, oo, my(t=k^n); if((f(t,1) || f(t,2) || f(t,3)) && nextprime(t+1)-precprime(t-1)==4, return(k))); \\ Daniel Suteu, Sep 03 2019

Extensions

a(2) corrected and a(45)-a(50) from Daniel Suteu, Sep 03 2019

A090122 Numbers k such that nextprime(k^4) - prevprime(k^4) = 4.

Original entry on oeis.org

2, 3, 21, 34, 46, 87, 99, 129, 141, 220, 242, 254, 266, 278, 279, 476, 526, 550, 616, 627, 657, 772, 777, 783, 795, 1072, 1088, 1322, 1442, 1486, 1540, 1552, 1586, 1653, 1725, 1833, 1959, 1994, 2001, 2043, 2068, 2192, 2224, 2360, 2384, 2432, 2734, 2770, 2866
Offset: 1

Views

Author

Labos Elemer, Jan 12 2004

Keywords

Examples

			For k = 21: k^4 = 194481, q = nextprime(k^4) = 194483, p = prevprime(k^4) = 194479, q - p = 4, so 21 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    pre[x_] := Prime[PrimePi[x]]; nex[x_] := Prime[PrimePi[x]+1]; de[x_] := Prime[PrimePi[x]+1]-Prime[PrimePi[x]]; k=4; Do[If[Equal[Prime[PrimePi[n^k]+1]-Prime[PrimePi[n^k]], 4], Print[n]], {n, 2, 100000}]
  • PARI
    is(k) = nextprime(k^4 + 1) - precprime(k^4 - 1) == 4; \\ Amiram Eldar, Jun 09 2024

Extensions

a(29)-a(49) from Giovanni Resta, May 08 2017

A090123 Integers k such that nextprime(k^5) - prevprime(k^5) = 4.

Original entry on oeis.org

411, 741, 819, 4041, 6165, 6315, 6861, 10281, 11025, 12489, 12579, 13119, 14331, 15225, 16095, 19125, 19881, 19929, 20799, 22461, 24051, 24885, 25815, 25971, 26979, 27075, 29955, 30801, 31641, 32661, 37371, 38361, 39369, 41181, 42681
Offset: 1

Views

Author

Labos Elemer, Jan 12 2004

Keywords

Examples

			For k = 411, k^5 = 11727599043051; nextprime(k^5) - prevprime(k^5) = 11727599043053 - 11727599043049 = 4, so k is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    pre[x_] := Prime[PrimePi[x]]; nex[x_] := Prime[PrimePi[x]+1]; de[x_] := Prime[PrimePi[x]+1]-Prime[PrimePi[x]]; k=5; Do[If[Equal[Prime[PrimePi[n^k]+1]-Prime[PrimePi[n^k]], 4], Print[n]], {n, 2, 100000}]
    np4Q[n_]:=Module[{c=n^5},NextPrime[c]-NextPrime[c,-1]==4]; Select[ Range[ 43000], np4Q] (* Harvey P. Dale, Oct 06 2017 *)
  • PARI
    isok(n) = (nextprime(n^5+1) - precprime(n^5-1)) == 4; \\ Michel Marcus, May 25 2018

Extensions

Wrong term 1 removed by Michel Marcus, May 25 2018
Showing 1-3 of 3 results.