A090131 Expansion of (1+x)/(1 - 2*x + 2*x^2).
1, 3, 4, 2, -4, -12, -16, -8, 16, 48, 64, 32, -64, -192, -256, -128, 256, 768, 1024, 512, -1024, -3072, -4096, -2048, 4096, 12288, 16384, 8192, -16384, -49152, -65536, -32768, 65536, 196608, 262144, 131072, -262144, -786432, -1048576, -524288, 1048576, 3145728, 4194304, 2097152, -4194304
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-2)
Crossrefs
Cf. A078069.
Programs
-
Mathematica
a[n_]:=(MatrixPower[{{1,-1},{1,1}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
Formula
a(n) = sum_{k=0..n} C(n, k)(-1)^floor(k/2)(1 + (1 - (-1)^k)/2).
a(n) = A*(B^Theta(n))*cos(Theta(n)) where A = 3.644691771.. = (5^0,5)*16^(arctan(2)/(2*Pi)) B = 0.64321824.. = 16^(-1/(2*Pi)) Theta(4p+1) = p*Pi + arctan(2) Theta(4*p+2) = p*Pi + arctan(1/3) Theta(4*p+3) = p*Pi + arctan(-1/2) Theta(4*p+4) = p*Pi + arctan(-3). - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 29 2007
Also a(0)=1, a(1)=3, a(2)=4, a(3)=2 and for n>3 a(n) = -4 * a(n-4). - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 29 2007
a(n) = 4a(n-1) - 6a(n-2) + 4a(n-3). - Paul Curtz, Nov 20 2007
a(n) = 2a(n-1) - 2a(n-2) = A009545(n) + A009545(n+1) = (1/2)*((1+2*i)*(1-i)^n + (1-2*i)*(1+i)^n). - Ralf Stephan, Jul 21 2013
Comments