cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A099456 Expansion of 1/(1 - 4*x + 5*x^2).

Original entry on oeis.org

1, 4, 11, 24, 41, 44, -29, -336, -1199, -3116, -6469, -10296, -8839, 16124, 108691, 354144, 873121, 1721764, 2521451, 1476984, -6699319, -34182196, -103232189, -242017776, -451910159, -597551756, -130656229, 2465133864
Offset: 0

Views

Author

Paul Barry, Oct 16 2004

Keywords

Comments

Associated to the knot 9_44 by the modified Chebyshev transform A(x) -> (1/(1+x^2)^2)A(x/(1+x^2)). See A099457 and A099458.
Imaginary part of (2+i)^n. - Gary W. Adamson, Apr 05 2008; Franklin T. Adams-Watters, Jan 06 2009

Crossrefs

Cf. A139011, A090131 (inv. bin. transf.)

Programs

  • Maple
    seq(((2+I)^(n+1) - (2-I)^(n+1))/(2*I),n=0..30);  # James R. Buddenhagen, Dec 29 2017
  • Mathematica
    CoefficientList[Series[1/(1-4*x+5*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 09 2013 *)
    Table[((1+2*I)*(2-I)^n + (1-2*I)*(2+I)^n)/2,{n,0,20}] (* Vaclav Kotesovec, Oct 09 2013 *)
  • Sage
    [lucas_number1(n,4,5) for n in range(1, 29)] # Zerinvary Lajos, Apr 22 2009

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-5)^k*4^(n-2k).
E.g.f. (with offset 1): exp(2*x)*sin(x). - Zerinvary Lajos, Apr 06 2009 [corrected by Joerg Arndt, Apr 24 2011]
a(n) = 4*a(n-1) - 5*a(n-2), a(0)=1, a(1)=4. - Vincenzo Librandi, Mar 22 2011
From Paul Curtz, Apr 24 2011: (Start)
a(n) - a(n-4) = 40 * A118444(n);
a(n) - a(n-2) = 10 * A139011(n). (End)
a(n) = ((1+2*i)*(2-i)^n + (1-2*i)*(2+i)^n)/2. - Vaclav Kotesovec, Oct 09 2013
a(n) = ((2+i)^(n+1) - (2-i)^(n+1))/(2*i).
Lim sup n->infinity |a(n)|/5^((n+1)/2) = 1. - Vaclav Kotesovec, Oct 09 2013
a(n) = Sum_{k=0..n} (-1)^k*2^(n-2*k)*binomial(n+1,2*k+1). - Gerry Martens, Sep 18 2022
E.g.f.: exp(2*x)*(cos(x) + 2*sin(x)). - Stefano Spezia, Jul 24 2025

A078069 Expansion of (1-x)/(1+2*x+2*x^2).

Original entry on oeis.org

1, -3, 4, -2, -4, 12, -16, 8, 16, -48, 64, -32, -64, 192, -256, 128, 256, -768, 1024, -512, -1024, 3072, -4096, 2048, 4096, -12288, 16384, -8192, -16384, 49152, -65536, 32768, 65536, -196608, 262144, -131072, -262144, 786432, -1048576, 524288, 1048576, -3145728, 4194304, -2097152, -4194304
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Pisano period lengths: 1, 1, 8, 1, 4, 8, 24, 1, 24, 4, 40, 8, 12, 24, 8, 1, 16, 24, 72, 4,... - R. J. Mathar, Aug 10 2012

Crossrefs

Cf. A090131.

Programs

  • Mathematica
    CoefficientList[Series[(1-x)/(1+2x+2x^2),{x,0,50}],x] (* or *) LinearRecurrence[{-2,-2},{1,-3},50] (* Harvey P. Dale, Jan 19 2012 *)
  • PARI
    Vec((1-x)/(1+2*x+2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012

Formula

a(n) = (-2)*(a(n-1)+a(n-2)), n>1 ; a(0)=1, a(1)=-3. - Philippe Deléham, Nov 19 2008
a(n) = A108520(n)-A108520(n-1). - R. J. Mathar, Aug 11 2012
G.f.: G(0)*(1 - x)/(2*(1 + x)), where G(k)= 1 + 1/(1 - x*(k+1)/(x*(k+2) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013
a(n) = (1/2 - I)*(-1 - I)^n + (1/2 + I)*(-1 + I)^n, n>=0. Taras Goy, Apr 20 2019

A208509 Triangle of coefficients of polynomials v(n,x) jointly generated with A208508; see the Formula section.

Original entry on oeis.org

1, 3, 5, 1, 7, 5, 9, 14, 1, 11, 30, 7, 13, 55, 27, 1, 15, 91, 77, 9, 17, 140, 182, 44, 1, 19, 204, 378, 156, 11, 21, 285, 714, 450, 65, 1, 23, 385, 1254, 1122, 275, 13, 25, 506, 2079, 2508, 935, 90, 1, 27, 650, 3289, 5148, 2717, 442, 15, 29, 819, 5005, 9867
Offset: 1

Views

Author

Clark Kimberling, Feb 27 2012

Keywords

Examples

			First five rows:
  1
  3
  5    1
  7    5
  9   14   1
First five polynomials v(n,x):
  1
  3
  5 +   x
  7 +  5x
  9 + 14x + x^2
		

Crossrefs

Row sums, v(n,1): A003948.
Alternating row sums, v(n,-1): A090131.
Cf. A208508.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A208508 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208509 *)

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x), v(n,x) = u(n-1,x) + v(n-1,x) + 1, with u(1,x)=1, v(1,x)=1.
Conjecture: T(n,k) = binomial(n-1,2*k+1) + binomial(n,2*k+1). - Knud Werner, Jan 11 2022

A207543 Triangle read by rows, expansion of (1+y*x)/(1-2*y*x+y*(y-1)*x^2).

Original entry on oeis.org

1, 0, 3, 0, 1, 5, 0, 0, 5, 7, 0, 0, 1, 14, 9, 0, 0, 0, 7, 30, 11, 0, 0, 0, 1, 27, 55, 13, 0, 0, 0, 0, 9, 77, 91, 15, 0, 0, 0, 0, 1, 44, 182, 140, 17, 0, 0, 0, 0, 0, 11, 156, 378, 204, 19, 0, 0, 0, 0, 0, 1, 65, 450, 714, 285, 21, 0
Offset: 0

Views

Author

Philippe Deléham, Feb 24 2012

Keywords

Comments

Previous name was: "A scaled version of triangle A082985."
Triangle, read by rows, given by (0, 1/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, -4/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Examples

			Triangle begins :
1
0, 3
0, 1, 5
0, 0, 5, 7
0, 0, 1, 14, 9
0, 0, 0, 7, 30, 11
0, 0, 0, 1, 27, 55, 13
0, 0, 0, 0, 9, 77, 91, 15
0, 0, 0, 0, 1, 44, 182, 140, 17
0, 0, 0, 0, 0, 11, 156, 378, 204, 19
0, 0, 0, 0, 0, 1, 65, 450, 714, 285, 21
0, 0, 0, 0, 0, 0, 13, 275, 1122, 1254, 385, 23
		

Crossrefs

Cf. A082985 which is another version of this triangle.
Cf. Diagonals : A005408, A000330, A005585, A050486, A054333, A057788. Cf. A119900.

Programs

  • Maple
    s := (1+y*x)/(1-2*y*x+y*(y-1)*x^2): t := series(s,x,12):
    seq(print(seq(coeff(coeff(t,x,n),y,m),m=0..n)),n=0..11); # Peter Luschny, Aug 17 2016

Formula

T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0) = 1, T(1,0) = 0, T(1,1) = 3.
G.f.: (1+y*x)/(1-2*y*x+y*(y-1)*x^2).
Sum_{i, i>=0} T(n+i,n) = A000204(2*n+1).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A078069(n), A000007(n), A003945(n), A111566(n) for x = -1, 0, 1, 2 respectively.
Sum_{k, 0<=k<=n} T(n,k)*x^(n-k) = A090131(n), A005408(n), A003945(n), A078057(n), A028859(n), A000244(n), A063782(n), A180168(n) for x = -1, 0, 1, 2, 3, 4, 5, 6 respectively.
From Peter Bala, Aug 17 2016: (Start)
Let S(k,n) = Sum_{i = 1..n} i^k. Calculations in Zielinski 2016 suggest the following identity holds involving the p-th row elements of this triangle:
Sum_{k = 0..p} T(p,k)*S(2*k,n) = 1/2*(2*n + 1)*(n*(n + 1))^p.
For example, for row 6 we find S(6,n) + 27*S(8,n) + 55*S(10,n) + 13*S(12,n) = 1/2*(2*n + 1)*(n*(n + 1))^6.
There appears to be a similar result for the odd power sums S(2*k + 1,n) involving A119900. (End)

Extensions

New name using a formula of the author from Peter Luschny, Aug 17 2016

A106664 Expansion of g.f.: (1-3*x+x^2)/((1-x)*(1+x)*(1-2*x+2*x^2)).

Original entry on oeis.org

-1, 1, 2, 5, 4, 1, -8, -15, -16, 1, 32, 65, 64, 1, -128, -255, -256, 1, 512, 1025, 1024, 1, -2048, -4095, -4096, 1, 8192, 16385, 16384, 1, -32768, -65535, -65536, 1, 131072, 262145, 262144, 1, -524288, -1048575, -1048576, 1, 2097152, 4194305, 4194304, 1, -8388608, -16777215, -16777216, 1, 33554432
Offset: 0

Views

Author

Creighton Dement, May 13 2005

Keywords

Comments

Superseeker finds that a(n+2) - a(n) = A090131(n+1) (or with different signs, see A078069).
Floretion Algebra Multiplication Program, FAMP Code: 2ibaseiseq[ + .5'i + .5i' - .5'ii' + .5'jj' + .5'kk' + .5e]

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!(  (1-3*x+x^2)/((1-x^2)*(1-2*x+2*x^2)) )); // G. C. Greubel, Sep 08 2021
    
  • Mathematica
    CoefficientList[Series[(1-3x+x^2)/((1-x)(1+x)(1-2x+2x^2)),{x,0,60}],x] (* Harvey P. Dale, Mar 20 2013 *)
  • SageMath
    def A106664_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( sinh(x) -exp(x)*(cos(x)-sin(x)) ).egf_to_ogf().list()
    A106664_list(50) # G. C. Greubel, Sep 08 2021

Formula

a(n) = (1/2)*(A010673(n) - A099087(n+2)).
a(n) = (1/2)*(1 - (-1)^n - (1-i)^(n+1) - (1+i)^(n+1)), with i=sqrt(-1). - Ralf Stephan, Nov 16 2010
From G. C. Greubel, Sep 08 2021: (Start)
a(n) = (1-(-1)^n)/2 - 2^((n+1)/2)*cos((n+1)*Pi/4).
a(n) = A000035(n) - A146559(n).
E.g.f.: sinh(x) - exp(x)*(cos(x) - sin(x)). (End)
Showing 1-5 of 5 results.