A099456
Expansion of 1/(1 - 4*x + 5*x^2).
Original entry on oeis.org
1, 4, 11, 24, 41, 44, -29, -336, -1199, -3116, -6469, -10296, -8839, 16124, 108691, 354144, 873121, 1721764, 2521451, 1476984, -6699319, -34182196, -103232189, -242017776, -451910159, -597551756, -130656229, 2465133864
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Mei Bai, Wenchang Chu, and Dongwei Guo, Reciprocal Formulae among Pell and Lucas Polynomials, Mathematics, 10, 2691, (2022). See p. 5.
- Beata Bajorska-Harapińska, Barbara Smoleń, and Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras (2019) Vol. 29, 54.
- Dror Bar-Natan, The Rolfsen Knot Table
- Index entries for linear recurrences with constant coefficients, signature (4,-5).
-
seq(((2+I)^(n+1) - (2-I)^(n+1))/(2*I),n=0..30); # James R. Buddenhagen, Dec 29 2017
-
CoefficientList[Series[1/(1-4*x+5*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 09 2013 *)
Table[((1+2*I)*(2-I)^n + (1-2*I)*(2+I)^n)/2,{n,0,20}] (* Vaclav Kotesovec, Oct 09 2013 *)
-
[lucas_number1(n,4,5) for n in range(1, 29)] # Zerinvary Lajos, Apr 22 2009
A078069
Expansion of (1-x)/(1+2*x+2*x^2).
Original entry on oeis.org
1, -3, 4, -2, -4, 12, -16, 8, 16, -48, 64, -32, -64, 192, -256, 128, 256, -768, 1024, -512, -1024, 3072, -4096, 2048, 4096, -12288, 16384, -8192, -16384, 49152, -65536, 32768, 65536, -196608, 262144, -131072, -262144, 786432, -1048576, 524288, 1048576, -3145728, 4194304, -2097152, -4194304
Offset: 0
-
CoefficientList[Series[(1-x)/(1+2x+2x^2),{x,0,50}],x] (* or *) LinearRecurrence[{-2,-2},{1,-3},50] (* Harvey P. Dale, Jan 19 2012 *)
-
Vec((1-x)/(1+2*x+2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
A208509
Triangle of coefficients of polynomials v(n,x) jointly generated with A208508; see the Formula section.
Original entry on oeis.org
1, 3, 5, 1, 7, 5, 9, 14, 1, 11, 30, 7, 13, 55, 27, 1, 15, 91, 77, 9, 17, 140, 182, 44, 1, 19, 204, 378, 156, 11, 21, 285, 714, 450, 65, 1, 23, 385, 1254, 1122, 275, 13, 25, 506, 2079, 2508, 935, 90, 1, 27, 650, 3289, 5148, 2717, 442, 15, 29, 819, 5005, 9867
Offset: 1
First five rows:
1
3
5 1
7 5
9 14 1
First five polynomials v(n,x):
1
3
5 + x
7 + 5x
9 + 14x + x^2
Alternating row sums, v(n,-1):
A090131.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208508 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208509 *)
A207543
Triangle read by rows, expansion of (1+y*x)/(1-2*y*x+y*(y-1)*x^2).
Original entry on oeis.org
1, 0, 3, 0, 1, 5, 0, 0, 5, 7, 0, 0, 1, 14, 9, 0, 0, 0, 7, 30, 11, 0, 0, 0, 1, 27, 55, 13, 0, 0, 0, 0, 9, 77, 91, 15, 0, 0, 0, 0, 1, 44, 182, 140, 17, 0, 0, 0, 0, 0, 11, 156, 378, 204, 19, 0, 0, 0, 0, 0, 1, 65, 450, 714, 285, 21, 0
Offset: 0
Triangle begins :
1
0, 3
0, 1, 5
0, 0, 5, 7
0, 0, 1, 14, 9
0, 0, 0, 7, 30, 11
0, 0, 0, 1, 27, 55, 13
0, 0, 0, 0, 9, 77, 91, 15
0, 0, 0, 0, 1, 44, 182, 140, 17
0, 0, 0, 0, 0, 11, 156, 378, 204, 19
0, 0, 0, 0, 0, 1, 65, 450, 714, 285, 21
0, 0, 0, 0, 0, 0, 13, 275, 1122, 1254, 385, 23
Cf.
A082985 which is another version of this triangle.
-
s := (1+y*x)/(1-2*y*x+y*(y-1)*x^2): t := series(s,x,12):
seq(print(seq(coeff(coeff(t,x,n),y,m),m=0..n)),n=0..11); # Peter Luschny, Aug 17 2016
New name using a formula of the author from
Peter Luschny, Aug 17 2016
A106664
Expansion of g.f.: (1-3*x+x^2)/((1-x)*(1+x)*(1-2*x+2*x^2)).
Original entry on oeis.org
-1, 1, 2, 5, 4, 1, -8, -15, -16, 1, 32, 65, 64, 1, -128, -255, -256, 1, 512, 1025, 1024, 1, -2048, -4095, -4096, 1, 8192, 16385, 16384, 1, -32768, -65535, -65536, 1, 131072, 262145, 262144, 1, -524288, -1048575, -1048576, 1, 2097152, 4194305, 4194304, 1, -8388608, -16777215, -16777216, 1, 33554432
Offset: 0
-
R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-3*x+x^2)/((1-x^2)*(1-2*x+2*x^2)) )); // G. C. Greubel, Sep 08 2021
-
CoefficientList[Series[(1-3x+x^2)/((1-x)(1+x)(1-2x+2x^2)),{x,0,60}],x] (* Harvey P. Dale, Mar 20 2013 *)
-
def A106664_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( sinh(x) -exp(x)*(cos(x)-sin(x)) ).egf_to_ogf().list()
A106664_list(50) # G. C. Greubel, Sep 08 2021
Showing 1-5 of 5 results.
Comments