A090131
Expansion of (1+x)/(1 - 2*x + 2*x^2).
Original entry on oeis.org
1, 3, 4, 2, -4, -12, -16, -8, 16, 48, 64, 32, -64, -192, -256, -128, 256, 768, 1024, 512, -1024, -3072, -4096, -2048, 4096, 12288, 16384, 8192, -16384, -49152, -65536, -32768, 65536, 196608, 262144, 131072, -262144, -786432, -1048576, -524288, 1048576, 3145728, 4194304, 2097152, -4194304
Offset: 0
-
a[n_]:=(MatrixPower[{{1,-1},{1,1}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
A207543
Triangle read by rows, expansion of (1+y*x)/(1-2*y*x+y*(y-1)*x^2).
Original entry on oeis.org
1, 0, 3, 0, 1, 5, 0, 0, 5, 7, 0, 0, 1, 14, 9, 0, 0, 0, 7, 30, 11, 0, 0, 0, 1, 27, 55, 13, 0, 0, 0, 0, 9, 77, 91, 15, 0, 0, 0, 0, 1, 44, 182, 140, 17, 0, 0, 0, 0, 0, 11, 156, 378, 204, 19, 0, 0, 0, 0, 0, 1, 65, 450, 714, 285, 21, 0
Offset: 0
Triangle begins :
1
0, 3
0, 1, 5
0, 0, 5, 7
0, 0, 1, 14, 9
0, 0, 0, 7, 30, 11
0, 0, 0, 1, 27, 55, 13
0, 0, 0, 0, 9, 77, 91, 15
0, 0, 0, 0, 1, 44, 182, 140, 17
0, 0, 0, 0, 0, 11, 156, 378, 204, 19
0, 0, 0, 0, 0, 1, 65, 450, 714, 285, 21
0, 0, 0, 0, 0, 0, 13, 275, 1122, 1254, 385, 23
Cf.
A082985 which is another version of this triangle.
-
s := (1+y*x)/(1-2*y*x+y*(y-1)*x^2): t := series(s,x,12):
seq(print(seq(coeff(coeff(t,x,n),y,m),m=0..n)),n=0..11); # Peter Luschny, Aug 17 2016
New name using a formula of the author from
Peter Luschny, Aug 17 2016
A134812
a(n) = 2a(n-2) + 4a(n-3), n >= 3.
Original entry on oeis.org
0, 1, -1, 1, 2, -2, 8, 4, 8, 40, 32, 112, 224, 352, 896, 1600, 3200, 6784, 12800, 26368, 52736, 103936, 210944, 418816, 837632, 1681408, 3350528, 6713344, 13426688, 26828800, 53706752, 107364352, 214728704, 429555712, 858914816, 1718026240, 3436052480, 6871711744, 13744209920
Offset: 0
-
CoefficientList[Series[x*(-1 + x + x^2) / ( (2*x-1)*(2*x^2 + 2*x + 1) ),{x,0,38}],x] (* James C. McMahon, Apr 11 2025 *)
A176739
Expansion of 1/(1-2*x^2-4*x^3). (2,4)-Padovan sequence.
Original entry on oeis.org
1, 0, 2, 4, 4, 16, 24, 48, 112, 192, 416, 832, 1600, 3328, 6528, 13056, 26368, 52224, 104960, 209920, 418816, 839680, 1677312, 3354624, 6713344, 13418496, 26845184, 53690368, 107364352, 214761472, 429490176, 858980352, 1718026240, 3435921408, 6871973888
Offset: 0
Combinatorics for (A,B)=(2,4) Padovan sequence with weighted (3,2)-Morse type code (see the W. Lang link under A000931): n=5, - -- and -- -, with weights 2^1*4^1 and 4^1*2^1, respectively, adding to 2*2*4=16=a(5).
-
seq(2^(n+1)/5 + Re((3-I)*(-1-I)^n)/5, n=0..100); # Robert Israel, Aug 26 2014
-
CoefficientList[Series[1/(1 - 2*x^2 - 4*x^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 26 2014 *)
A340670
Number of complex base i-1 points which can be represented within n bits and negated within those n bits.
Original entry on oeis.org
1, 1, 1, 3, 5, 15, 29, 47, 101, 199, 413, 847, 1621, 3255, 6541, 13087, 26373, 52423, 104637, 209711, 419253, 839511, 1678317, 3353919, 6710629, 13421287, 26845213, 53693007, 107366933, 214742391, 429498701, 858994271, 1718023109, 3435955975, 6871883645
Offset: 0
For n=3, the a(3)=3 points of n bits are m = 0,3,7 < 2^n, which negate to A340669(0,3,7) = 0,7,3 < 2^n. These m are located at z = 0,i,-i,
negate intersection
z(0..7) (rotate 180) a(3) = 3 points
* *
* * * * *
o * * o o
* * * * *
* *
-
{ my(table=[4,-2,-2,6, -4,2,2,-6], p=Mod('x,2-'x+'x^2));
a(n) = (6<
A106664
Expansion of g.f.: (1-3*x+x^2)/((1-x)*(1+x)*(1-2*x+2*x^2)).
Original entry on oeis.org
-1, 1, 2, 5, 4, 1, -8, -15, -16, 1, 32, 65, 64, 1, -128, -255, -256, 1, 512, 1025, 1024, 1, -2048, -4095, -4096, 1, 8192, 16385, 16384, 1, -32768, -65535, -65536, 1, 131072, 262145, 262144, 1, -524288, -1048575, -1048576, 1, 2097152, 4194305, 4194304, 1, -8388608, -16777215, -16777216, 1, 33554432
Offset: 0
-
R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-3*x+x^2)/((1-x^2)*(1-2*x+2*x^2)) )); // G. C. Greubel, Sep 08 2021
-
CoefficientList[Series[(1-3x+x^2)/((1-x)(1+x)(1-2x+2x^2)),{x,0,60}],x] (* Harvey P. Dale, Mar 20 2013 *)
-
def A106664_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( sinh(x) -exp(x)*(cos(x)-sin(x)) ).egf_to_ogf().list()
A106664_list(50) # G. C. Greubel, Sep 08 2021
Showing 1-6 of 6 results.
Comments