cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090200 a(n) = N(7,n), where N(7,x) is the 7th Narayana polynomial.

Original entry on oeis.org

1, 429, 4279, 20071, 65445, 171481, 387739, 788019, 1476841, 2596645, 4335711, 6936799, 10706509, 16025361, 23358595, 33267691, 46422609, 63614749, 85770631, 113966295, 149442421, 193620169, 248117739, 314767651
Offset: 0

Views

Author

Philippe Deléham, Jan 22 2004

Keywords

Crossrefs

Programs

  • Magma
    [n^6+21*n^5+105*n^4+175*n^3+105*n^2+21*n+1: n in [0..30]]; // G. C. Greubel, Feb 16 2021
  • Maple
    A090200:= n-> n^6+21*n^5+105*n^4+175*n^3+105*n^2+21*n+1; seq(A090200(n), n=0..30) # G. C. Greubel, Feb 16 2021
  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,429,4279,20071,65445,171481,387739},30] (* Harvey P. Dale, Feb 10 2019 *)
  • PARI
    a(n) = n^6+21*n^5+105*n^4+175*n^3+105*n^2+21*n+1 \\ Charles R Greathouse IV, Jan 17 2012
    
  • Sage
    [n^6+21*n^5+105*n^4+175*n^3+105*n^2+21*n+1 for n in (0..30)] # G. C. Greubel, Feb 16 2021
    

Formula

a(n) = N(7, n) = Sum_{k>0} A001263(7, k)*n^(k-1) = n^6 + 21*n^5 + 105*n^4 + 175*n^3 + 105*n^2 + 21*n + 1.
G.f.: (1 +422*x +1297*x^2 -908*x^3 -173*x^4 +86*x^5 -5*x^6)/(1-x)^7. - Philippe Deléham, Apr 03 2013; corrected by Georg Fischer, May 02 2019
E.g.f.: (1 +428*x +1711*x^2 +1420*x^3 +380*x^4 +36*x^5 +x^6)*exp(x). - G. C. Greubel, Feb 16 2021

Extensions

Corrected by T. D. Noe, Nov 09 2006