A090200 a(n) = N(7,n), where N(7,x) is the 7th Narayana polynomial.
1, 429, 4279, 20071, 65445, 171481, 387739, 788019, 1476841, 2596645, 4335711, 6936799, 10706509, 16025361, 23358595, 33267691, 46422609, 63614749, 85770631, 113966295, 149442421, 193620169, 248117739, 314767651
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Magma
[n^6+21*n^5+105*n^4+175*n^3+105*n^2+21*n+1: n in [0..30]]; // G. C. Greubel, Feb 16 2021
-
Maple
A090200:= n-> n^6+21*n^5+105*n^4+175*n^3+105*n^2+21*n+1; seq(A090200(n), n=0..30) # G. C. Greubel, Feb 16 2021
-
Mathematica
LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,429,4279,20071,65445,171481,387739},30] (* Harvey P. Dale, Feb 10 2019 *)
-
PARI
a(n) = n^6+21*n^5+105*n^4+175*n^3+105*n^2+21*n+1 \\ Charles R Greathouse IV, Jan 17 2012
-
Sage
[n^6+21*n^5+105*n^4+175*n^3+105*n^2+21*n+1 for n in (0..30)] # G. C. Greubel, Feb 16 2021
Formula
a(n) = N(7, n) = Sum_{k>0} A001263(7, k)*n^(k-1) = n^6 + 21*n^5 + 105*n^4 + 175*n^3 + 105*n^2 + 21*n + 1.
G.f.: (1 +422*x +1297*x^2 -908*x^3 -173*x^4 +86*x^5 -5*x^6)/(1-x)^7. - Philippe Deléham, Apr 03 2013; corrected by Georg Fischer, May 02 2019
E.g.f.: (1 +428*x +1711*x^2 +1420*x^3 +380*x^4 +36*x^5 +x^6)*exp(x). - G. C. Greubel, Feb 16 2021
Extensions
Corrected by T. D. Noe, Nov 09 2006