A090238 Triangle T(n, k) read by rows. T(n, k) is the number of lists of k unlabeled permutations whose total length is n.
1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 24, 16, 6, 1, 0, 120, 72, 30, 8, 1, 0, 720, 372, 152, 48, 10, 1, 0, 5040, 2208, 828, 272, 70, 12, 1, 0, 40320, 14976, 4968, 1576, 440, 96, 14, 1, 0, 362880, 115200, 33192, 9696, 2720, 664, 126, 16, 1, 0, 3628800, 996480, 247968, 64704, 17312, 4380, 952, 160, 18, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 2, 1; 0, 6, 4, 1; 0, 24, 16, 6, 1; 0, 120, 72, 30, 8, 1; 0, 720, 372, 152, 48, 10, 1; 0, 5040, 2208, 828, 272, 70, 12, 1; 0, 40320, 14976, 4968, 1576, 440, 96, 14, 1; 0, 366880, 115200, 33192, 9696, 2720, 664, 126, 16, 1; 0, 3628800, 996480, 247968, 64704, 17312, 4380, 952, 160, 18, 1; ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 171, #34.
Crossrefs
Programs
-
Maple
T := proc(n,k) option remember; if n=0 and k=0 then return 1 fi; if n>0 and k=0 or k>0 and n=0 then return 0 fi; T(n-1,k-1)+(n+k-1)*T(n-1,k)/k end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # Peter Luschny, Mar 03 2016 # Uses function PMatrix from A357368. PMatrix(10, factorial); # Peter Luschny, Oct 09 2022
-
Mathematica
T[n_, k_] := T[n, k] = T[n-1, k-1] + ((n+k-1)/k)*T[n-1, k]; T[0, 0] = 1; T[, 0] = T[0, ] = 0; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2018 *)
Formula
T(n, k) is given by [0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
T(n, k) = T(n-1, k-1) + ((n+k-1)/k)*T(n-1, k); T(0, 0)=1, T(n, 0)=0 if n > 0, T(0, k)=0 if k > 0.
G.f. for the k-th column: (Sum_{i>=1} i!*t^i)^k = Sum_{n>=k} T(n, k)*t^n.
Sum_{k=0..n} T(n, k)*binomial(m, k) = A084938(m+n, m). - Philippe Deléham, Jan 31 2004
T(n, k) = Sum_{j>=0} A090753(j)*T(n-1, k+j-1). - Philippe Deléham, Feb 18 2004
From Peter Bala, May 27 2017: (Start)
Conjectural o.g.f.: 1/(1 + t - t*F(x)) = 1 + t*x + (2*t + t^2)*x^2 + (6*t + 4*t^2 + t^3)*x^3 + ..., where F(x) = Sum_{n >= 0} n!*x^n.
If true then a continued fraction representation of the o.g.f. is 1 - t + t/(1 - x/(1 - t*x - x/(1 - 2*x/(1 - 2*x/(1 - 3*x/(1 - 3*x/(1 - 4*x/(1 - 4*x/(1 - ... ))))))))). (End)
Extensions
New name using a comment from David Callan by Peter Luschny, Sep 01 2022
Comments