cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090281 "Plain Bob Minimus" in bell-ringing is a sequence of permutations p_1=(1,2,3,4), p_2=(2,1,4,3), ... which runs through all permutations of {1,2,3,4} with period 24; sequence gives position of bell 1 (the treble bell) in n-th permutation.

Original entry on oeis.org

1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3
Offset: 1

Views

Author

N. J. A. Sloane, Jan 24 2004

Keywords

Comments

This is the "plain hunting" sequence with 4 bells.
a(n) is also the position of bell 4 (the tenor bell) in the (n+4)-th permutation of the "Fourth down, Extream between the two farthest Bells from it" bell-ringing permutation, A143484. - Alois P. Heinz, Aug 19 2008
Period 8 sequence: 1, 2, 3, 4, 4, 3, 2, 1, ... - Wesley Ivan Hurt, Mar 27 2014

Examples

			The full list of the 24 permutations is as follows (the present sequence tells where the 1's are):
1 2 3 4
2 1 4 3
2 4 1 3
4 2 3 1
4 3 2 1
3 4 1 2
3 1 4 2
1 3 2 4
1 3 4 2
3 1 2 4
3 2 1 4
2 3 4 1
2 4 3 1
4 2 1 3
4 1 2 3
1 4 3 2
1 4 2 3
4 1 3 2
4 3 1 2
3 4 2 1
3 2 4 1
2 3 1 4
2 1 3 4
1 2 4 3
		

Crossrefs

Programs

  • Maple
    ring:= proc(k) option remember; local l, a, b, c, swap, h; l:= [1,2,3,4]; swap:= proc(i,j) h:=l[i]; l[i]:=l[j]; l[j]:=h end; a:= proc() swap(1,2); swap(3,4); l[k] end; b:= proc() swap(2,3); l[k] end; c:= proc() swap(3,4); l[k] end; [l[k], seq([seq([a(), b()][], j=1..3), a(), c()][], i=1..3)] end: bells:=[seq(ring(k), k=1..4)]: indx:= proc(l, n, k) local i; for i from 1 to 4 do if l[i][n]=k then break fi od; i end: a:= n-> indx(bells, modp(n-1,24)+1, 1): seq(a(n), n=1..99); # Alois P. Heinz, Aug 19 2008
  • Mathematica
    Table[Mod[Floor[-Abs[n-(16*Ceiling[n/8]-7)/2] + (16*Ceiling[n/8]-7)/2],8], {n, 100}] (* Wesley Ivan Hurt, Mar 26 2014 *)
    LinearRecurrence[{1, 0, 0, -1, 1}, {1, 2, 3, 4, 4}, 105] (* Jean-François Alcover, Mar 15 2021 *)
  • Scheme
    (define (A090281 n) (list-ref '(1 2 3 4 4 3 2 1) (modulo (- n 1) 8))) ;; Antti Karttunen, Aug 10 2017

Formula

a(n) = (floor(-abs(n-(16*ceiling(n/8)-7)/2) + (16*ceiling(n/8)-7)/2)) mod 8. - Wesley Ivan Hurt, Mar 26 2014
G.f.: -x*(x^4+x^3+x^2+x+1) / ((x-1)*(x^4+1)). - Colin Barker, Mar 26 2014