A090297 a(n) = K_5(n) = Sum_{k>=0} A090285(5,k)*2^k*binomial(n,k). a(n) = 2*(2*n^5+45*n^4+360*n^3+1215*n^2+1528*n+315)/15.
42, 462, 1586, 3958, 8330, 15694, 27314, 44758, 69930, 105102, 152946, 216566, 299530, 405902, 540274, 707798, 914218, 1165902, 1469874, 1833846, 2266250, 2776270, 3373874, 4069846, 4875818, 5804302, 6868722, 8083446, 9463818
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Cf. A090285.
Programs
-
Magma
[2*(2*n^5 + 45*n^4 + 360*n^3 + 1215*n^2 + 1528*n + 315)/15: n in [0..30]]; // Vincenzo Librandi, Sep 18 2012
-
Mathematica
Table[(2*(2*n^5 + 45*n^4 + 360*n^3 + 1215*n^2 + 1528*n + 315)/15),{n, 0, 50}] (* Vincenzo Librandi, Sep 18 2012 *) LinearRecurrence[{6,-15,20,-15,6,-1},{42,462,1586,3958,8330,15694},30] (* Harvey P. Dale, Apr 17 2020 *)
Formula
G.f.: (42+210*x-556*x^2+532*x^3-238*x^4+42*x^5)/(1-x)^6. [Colin Barker, Sep 18 2012]
Extensions
Corrected by T. D. Noe, Nov 09 2006
Comments