cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090297 a(n) = K_5(n) = Sum_{k>=0} A090285(5,k)*2^k*binomial(n,k). a(n) = 2*(2*n^5+45*n^4+360*n^3+1215*n^2+1528*n+315)/15.

Original entry on oeis.org

42, 462, 1586, 3958, 8330, 15694, 27314, 44758, 69930, 105102, 152946, 216566, 299530, 405902, 540274, 707798, 914218, 1165902, 1469874, 1833846, 2266250, 2776270, 3373874, 4069846, 4875818, 5804302, 6868722, 8083446, 9463818
Offset: 0

Views

Author

Philippe Deléham, Jan 25 2004

Keywords

Comments

Values of polynomial K_5 related to A090285.

Crossrefs

Cf. A090285.

Programs

  • Magma
    [2*(2*n^5 + 45*n^4 + 360*n^3 + 1215*n^2 + 1528*n + 315)/15: n in [0..30]]; // Vincenzo Librandi, Sep 18 2012
  • Mathematica
    Table[(2*(2*n^5 + 45*n^4 + 360*n^3 + 1215*n^2 + 1528*n + 315)/15),{n, 0, 50}] (* Vincenzo Librandi, Sep 18 2012  *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{42,462,1586,3958,8330,15694},30] (* Harvey P. Dale, Apr 17 2020 *)

Formula

G.f.: (42+210*x-556*x^2+532*x^3-238*x^4+42*x^5)/(1-x)^6. [Colin Barker, Sep 18 2012]

Extensions

Corrected by T. D. Noe, Nov 09 2006