A090318 a(n) = least positive k such that k, k+1, k+2, ..., k+n-1 is a stapled interval of length n, or 0 if no such sequence exists.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2184, 27829, 27828, 87890, 87890, 171054, 171054, 323510, 127374, 323510, 151062, 151062, 151062, 151061, 151060, 151059, 151058, 7106718, 7106718, 7567747, 7567746, 7567745, 7567744, 7567743, 7567742, 48595315, 48595314, 48595313
Offset: 1
Examples
The shortest possible stapled sequence is [2184, 2185, 2186, 2187, 2188, 2189, 2190, 2191, 2192, 2193, 2194, 2195, 2196, 2197, 2198, 2199, 2200].
References
- I. Gassko, Common factor graphs of stapled sequences, Proceedings of the Twenty-eighth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1997). Congr. Numer. 126 (1997), 163-173.
- I. Gassko, Stapling and composite coverings of natural numbers, Proceedings of the Twenty-seventh Southeastern International Conference on Combinatorics, Graph Theory and Computing (Baton Rouge, LA, 1996). Congr. Numer. 118 (1996), 109-116.
- H. L. Nelson, There is a better sequence, Journal of Recreational Mathematics, Vol. 8(1), 1975, pp. 39-43.
Links
- Max Alekseyev and William Rex Marshall, Table of n, a(n) for n = 1..103
- Ethan Berkove and Michael Brilleslyper, Subgraphs of Coprime Graphs on Sets of Consecutive Integers, Integers (2022) Vol. 22, #A47, see p. 8.
- A. Brauer, On a Property of k Consecutive Integers, Bull. Amer. Math. Society, vol. 47, 1941, pp. 328-331.
- R. B. Eggleton, Common factors of integers: A graphic view, Discrete Math. 65 (1987), 141-147.
- R. J. Evans, On Blocks of N Consecutive Integers, Amer. Math. Monthly, vol. 76, 1969, pp. 48-49.
- R. J. Evans, On N Consecutive Integers in an Arithmetic Progression, Acta Sci. Math. Univ. Szeged, vol. 33, 1972, pp. 295-296.
- Irene Gassko, Stapled Sequences and Stapling Coverings of Natural Numbers, Electronic Journal of Combinatorics, Vol. 3, Paper R33.
- L. Hajdu and N. Saradha, On a problem of Pillai and its generalizations, Acta Arithmetica 144:4 (2010), pp. 323-347.
- Heiko Harborth, Eine Eigenschaft Aufeinanderfolgender Zahlen, Arch. Math. (Basel), vol. 21, 1970, pp. 50-51.
- Jyhmin Kuo and Hung-Lin Fu, On Near Relative Prime Number in a Sequence of Positive Integers, Taiwanese J. Math. 14 (1) 123-129, 2010.
- S. S. Pillai, On m Consecutive Integers I, Proc. Indian Acad. Sci., Sect. A, vol. 11, 1940, pp. 6-12; II ibid., vol. 11, 1940, pp. 73-80, III ibid, vol. 13, 1941, pp. 530-533; IV Bull. Calcutta Math. Soc. 36, 1944, pp. 99-101.
Programs
-
Mathematica
dd = 41; nn = 10^7; Clear[sp, L]; sp[] = 0; L[] = 0; For[ i = 0, i < PrimePi[dd], ++i, p = Prime[i + 1]; For[ n = 0, n < nn + dd, n += p, If[sp[n] == 0, sp[n] = p]]]; Print["init done"]; For[ n = 1, n <= nn, ++n, m = 1; For[ d = 0, d < dd, ++d, s = sp[n + d]; If[s == 0, Break[]]; If[s > d, m = Max[m, d + s]]; If[d >= m && L[d] == 0, L[d] = n]] ]; Reap[For[ i = 1, i <= dd, ++i, Print["a[", i, "] = ", L[i - 1]]; Sow[L[i - 1]]]][[2, 1]] (* Jean-François Alcover, Mar 26 2013, translated and adapted from Max Alekseyev's program *)
Extensions
Edited by N. J. A. Sloane, Aug 04 2007, Oct 08 2007
Comments