A130170
"Stapled" intervals are defined in A090318. Call a stapled interval "maximal" if it is not a proper subinterval of any other stapled interval. Sequence gives starting points of maximal stapled intervals.
Original entry on oeis.org
2184, 27828, 32214, 57860, 62244, 87890, 92274, 110990, 117920, 122304, 127374, 147950, 151058, 152334, 163488, 171054, 177980, 182364, 185924, 208010, 212394, 238040, 242424, 249678, 260810, 264498, 268070, 272454
Offset: 1
A130171
"Stapled" intervals are defined in A090318. Call a stapled interval "minimal" if it does not contain any proper stapled subinterval. Sequence gives starting points of minimal stapled intervals.
Original entry on oeis.org
2184, 27830, 32214, 57860, 62244, 87890, 92274, 110990, 117920, 122304, 127374, 147950, 151062, 152334, 163488, 171054, 177980, 182364, 185926, 208010, 212394, 238040, 242424, 249678, 260814, 264498, 268070, 272454
Offset: 1
A130173
Starting points of stapled intervals.
Original entry on oeis.org
2184, 27828, 27829, 27830, 32214, 57860, 62244, 87890, 92274, 110990, 117920, 122304, 127374, 147950, 151058, 151059, 151060, 151061, 151062, 152334, 163488, 171054, 177980, 182364, 185924, 185925, 185926, 208010, 212394
Offset: 1
- H. L. Nelson, There is a better sequence, Journal of Recreational Mathematics, Vol. 8(1), 1975, pp. 39-43.
- Fidel I. Schaposnik, Table of n, a(n) for n = 1..1492 (first 76 terms from Max Alekseyev)
- A. Brauer, On a Property of k Consecutive Integers, Bull. Amer. Math. Society, vol. 47, 1941, pp. 328-331.
- R. J. Evans, On Blocks of N Consecutive Integers, Amer. Math. Monthly, vol. 76, 1969, pp. 48-49.
- Irene Gassko, Stapled Sequences and Stapling Coverings of Natural Numbers, Electronic Journal of Combinatorics, Vol. 3, 1996, Paper R33.
A194585
Starting points of stapled intervals of length 17.
Original entry on oeis.org
2184, 27830, 32214, 57860, 62244, 87890, 92274, 117920, 122304, 147950, 152334, 177980, 182364, 208010, 212394, 238040, 242424, 268070, 272454, 298100, 302484, 328130, 332514, 358160, 362544, 388190, 392574, 418220, 422604, 448250
Offset: 1
-
{u=vector(17,j,1);v=vector(17,j,j);for(k=2,1e9, nextprime(k)
A244620
Initial terms of Erdős-Wood intervals of length 22.
Original entry on oeis.org
3521210, 6178458, 13220900, 15878148, 22920590, 25577838, 32620280, 35277528, 42319970, 44977218, 52019660, 54676908, 61719350, 64376598, 71419040, 74076288, 81118730, 83775978, 90818420, 93475668, 100518110, 103175358, 110217800, 112875048, 119917490
Offset: 1
3521210 = 2*5*7*11*17*269 and 3521210+22 = 3521232 = 2^4 * 3^4 * 11 * 13 * 19, and all numbers in [3521210,3521232] have at least one prime factor in {2, 3, 5, 7, 11, 13, 17, 19, 269}. Therefore 3521210 is in the list.
-
isEWood := proc(n,ewlength)
local nend,fsn,fsne,fsall,fsk ;
nend := n+ewlength ;
fsn := numtheory[factorset](n) ;
fsne := numtheory[factorset](nend) ;
fsall := fsn union fsne ;
for k from n to nend do
fsk := numtheory[factorset](k) ;
if fsk intersect fsall = {} then
return false;
end if;
end do:
return true;
end proc:
for n from 2 do
if isEWood(n,22) then
print(n) ;
end if;
end do:
A152816
Minimum positive initial term of a minimum length n-fold stapled sequence.
Original entry on oeis.org
1, 2184, 2496060719312
Offset: 0
For n = 2, the 41 consecutive integers of the first minimum length 2-fold stapled sequence is given in the following list along with the prime factors each term shares with at least two other terms:
2496060719312: 2, 17
2496060719313: 3, 7
2496060719314: 2, 19, 37
2496060719315: 5
2496060719316: 2, 3
2496060719317: 11
2496060719318: 2
2496060719319: 3
2496060719320: 2, 5, 7, 31
2496060719321: 13
2496060719322: 2, 3
2496060719323: 23, 29
2496060719324: 2
2496060719325: 3, 5
2496060719326: 2
2496060719327: 7
2496060719328: 2, 3, 11
2496060719329: 17
2496060719330: 2, 5
2496060719331: 3
2496060719332: 2
2496060719333: 19
2496060719334: 2, 3, 7, 13
2496060719335: 5
2496060719336: 2
2496060719337: 3
2496060719338: 2
2496060719339: 11
2496060719340: 2, 3, 5
2496060719341: 7
2496060719342: 2
2496060719343: 3
2496060719344: 2
2496060719345: 5
2496060719346: 2, 3, 17, 23
2496060719347: 13
2496060719348: 2, 7
2496060719349: 3
2496060719350: 2, 5, 11
2496060719351: 31, 37
2496060719352: 2, 3, 19, 29
Showing 1-6 of 6 results.
Comments