A090345 Number of Motzkin paths of length n with no level steps at even level.
1, 0, 1, 1, 3, 5, 12, 24, 55, 119, 272, 612, 1411, 3247, 7565, 17667, 41561, 98099, 232696, 553784, 1322813, 3169065, 7614583, 18342921, 44294991, 107200829, 259983346, 631718606, 1537737567, 3749440151, 9156561590, 22394270034, 54845701243, 134497468359
Offset: 0
Keywords
Examples
a(5)=5 because we have UHDUD, UDUHD, UHUDD, UUDHD and UHHHD, where U=(1,1), D=(1,-1) and H=(1,0).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- David Callan, Some bijections for lattice paths, arXiv:2112.05241 [math.CO], 2021.
- Emeric Deutsch, Emanuele Munarini and Simone Rinaldi, Skew Dyck paths, area, and superdiagonal bargraphs, Journal of Statistical Planning and Inference, Vol. 140, Issue 6, June 2010, pp. 1550-1562.
Programs
-
Mathematica
CoefficientList[Series[(1-x-Sqrt[1-2*x-3*x^2+4*x^3])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
Formula
G.f.: (1 - z - sqrt(1 - 2*z - 3*z^2 + 4*z^3))/(2*z^2).
G.f. A(x) satisfies A(x) = A(x/(x-1)). - Vladeta Jovovic, Jul 07 2004
Also (x*A)^2 = (1-x)*(A-1). - Vladeta Jovovic, Jul 07 2004
G.f.: 1/(1-x^2/(1-x-x^2/(1-x^2/(1-x-x^2/(1-x^2/(1-x-x^2/(1-... (continued fraction). - Paul Barry, Apr 08 2009
G.f.: 1/(1-z/(1-z/(1-z/(...)))) where z=x^2/(1-x) (continued fraction); in other words, g.f.: C(x^2/(1-x)) where C(x) is the g.f. for the Catalan numbers (A000108). - Joerg Arndt, Mar 18 2011
a(0) = 1, a(n) = Sum_{k=0..floor(n/2)} (k/(n-k))*binomial(n-k,k)*A000108(k). - Paul Barry, Jul 01 2009
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1, n-2k)*A000108(k). - Paul Barry, Mar 23 2011
The sequence starting with offset 1 = iterates of M*V, leftmost column. M = an infinite tridiagonal matrix with all 1's in the sub and superdiagonals and [0,1,0,1,0,1,0,1,...] as the main diagonal; and the rest zeros. V = vector [1,0,0,0,...]. - Gary W. Adamson, Jun 08 2011
D-finite with recurrence (n+2)*a(n) + (-2*n-1)*a(n-1) + 3*(-n+1)*a(n-2) + 2*(2*n-5)*a(n-3) = 0. - R. J. Mathar, Nov 24 2012
a(n) ~ sqrt(34+2*sqrt(17)) * ((1+sqrt(17))/2)^n / (4 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 12 2014
a(0) = 1, a(1) = 0; a(n) = a(n-1) + Sum_{k=0..n-2} a(k) * a(n-k-2). - Ilya Gutkovskiy, Jul 20 2021
Comments