A090371 Number of unrooted planar 2-constellations with n digons. Also number of n-edge unrooted planar Eulerian maps with bicolored faces.
1, 3, 6, 20, 60, 291, 1310, 6975, 37746, 215602, 1262874, 7611156, 46814132, 293447817, 1868710728, 12068905911, 78913940784, 521709872895, 3483289035186, 23464708686960, 159346213738020, 1090073011199451, 7507285094455566, 52021636161126702
Offset: 1
Examples
The 3 Eulerian maps with 2 edges are the digon and two figure eight graphs ("8") in which both loops are colored, resp., black or white.
Links
- R. J. Mathar, Table of n, a(n) for n = 1..100
- M. Bousquet-Mélou and G. Schaeffer, Enumeration of planar constellations, Adv. in Appl. Math. v.24 (2000), 337-368.
- A. Mednykh and R. Nedela, Counting unrooted hypermaps on closed orientable surface, 18th Intern. Conf. Formal Power Series & Algebr. Comb., Jun 19, 2006, San Diego, California (USA).
- A. Mednykh and R. Nedela, Enumeration of unrooted hypermaps of a given genus, Discr. Math., 310 (2010), 518-526. [From _N. J. A. Sloane_, Dec 19 2009]
- A. Mednykh and R. Nedela, Recent progress in enumeration of hypermaps, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), table 2.
- Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps
- Timothy R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3.
Programs
-
Maple
A090371 := proc(n) local s, d; if n=0 then 1 ; else s := -2^n*binomial(2*n, n); for d in numtheory[divisors](n) do s := s+ numtheory[phi](n/d)*2^d*binomial(2*d, d) od; 3/(2*n)*(2^n*binomial(2*n, n)/((n+1)*(n+2))+s/2); fi; end proc:
-
Mathematica
h0[n_] := 3*2^(n-1)*Binomial[2*n, n]/((n+1)*(n+2)); a[n_] := (h0[n] + DivisorSum[n, If[#>1, EulerPhi[#]*Binomial[n/#+2, 2]*h0[n/#], 0]&])/n; Array[a, 30] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
-
PARI
h0(n) = 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2)); a(n) = (h0(n) + sumdiv(n, d, (d>1)*eulerphi(d)*binomial(n/d+2,2)*h0(n/d)))/n; \\ Michel Marcus, Dec 11 2014
Extensions
More terms from Michel Marcus, Dec 11 2014
Comments