A090405 a(n) = PrimePi(n+2) - PrimePi(n).
2, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Hardy-Littlewood Conjectures
Programs
-
Maple
with(numtheory): A090405:=n->pi(n+2)-pi(n): seq(A090405(n), n=1..150); # Wesley Ivan Hurt, Mar 30 2017
-
Mathematica
Table[Subtract @@ Map[PrimePi, n + {2, 0}], {n, 120}] (* or *) Table[Boole@ PrimeQ[n + 1 + Boole[OddQ@ n]] + Boole[n == 1], {n, 120}] (* Michael De Vlieger, Mar 30 2017 *)
-
PARI
for(n=1, 100, print1(primepi(n + 2) - primepi(n),", ")) \\ Indranil Ghosh, Mar 31 2017
-
Python
from sympy import primepi print([primepi(n + 2) - primepi(n) for n in range(1, 101)]) # Indranil Ghosh, Mar 31 2017
-
Python
from sympy import isprime def a(n): if n<2: return 2 else: if isprime(n + 1 + (n%2 == 1) + (n==1)): return 1 else: return 0 # Indranil Ghosh, Mar 31 2017
Comments