cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A090408 a(n) = Sum_{k=0..n} binomial(4n+3,4k).

Original entry on oeis.org

1, 36, 496, 8256, 130816, 2098176, 33550336, 536887296, 8589869056, 137439215616, 2199022206976, 35184376283136, 562949936644096, 9007199321849856, 144115187807420416, 2305843010287435776, 36893488143124135936, 590295810375885520896, 9444732965670570950656
Offset: 0

Views

Author

Paul Barry, Nov 29 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[4n+3,4k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Feb 12 2020 *)

Formula

a(n) = 2^(1+4*n) - (-1)^n*4^n. - R. J. Mathar, Nov 27 2014

A345455 a(n) = Sum_{k=0..n} binomial(5*n+1,5*k).

Original entry on oeis.org

1, 7, 474, 12393, 427351, 13333932, 430470899, 13733091643, 439924466026, 14072420067757, 450374698997499, 14411355379952868, 461170414282959151, 14757375158697584607, 472236871202375365274, 15111570273013075344193, 483570355262634763462351
Offset: 0

Views

Author

Seiichi Manyama, Jun 20 2021

Keywords

Crossrefs

Sum_{k=0..n} binomial(b*n+c,b*k): A082311 (b=3,c=1), A090407 (b=4,c=1), A070782 (b=5,c=0), this sequence (b=5,c=1), A345456 (b=5,c=2), A345457 (b=5,c=3), A345458 (b=5,c=4).
Cf. A139398.

Programs

  • Mathematica
    a[n_] := Sum[Binomial[5*n + 1, 5*k], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Jun 20 2021 *)
    LinearRecurrence[{21,353,-32},{1,7,474},20] (* Harvey P. Dale, Jul 20 2021 *)
  • PARI
    a(n) = sum(k=0, n, binomial(5*n+1, 5*k));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec((1-14*x-26*x^2)/((1-32*x)*(1+11*x-x^2)))

Formula

G.f.: (1 - 14*x - 26*x^2) / ((1 - 32*x)*(1 + 11*x - x^2)).
a(n) = 21*a(n-1) + 353*a(n-2) - 32*a(n-3) for n>2.
a(n) = A139398(5*n+1).
a(n) = 2^(5*n + 2)/10 + ((-475 + 213*sqrt(5))/phi^(5*n) - ( 65 - 33*sqrt(5))*(-1)^n*phi^(5*n)) / (10*(41*sqrt(5)-90)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jun 20 2021

A090411 Expansion of g.f. (1-x)/(1-16*x).

Original entry on oeis.org

1, 15, 240, 3840, 61440, 983040, 15728640, 251658240, 4026531840, 64424509440, 1030792151040, 16492674416640, 263882790666240, 4222124650659840, 67553994410557440, 1080863910568919040, 17293822569102704640, 276701161105643274240, 4427218577690292387840
Offset: 0

Views

Author

Paul Barry, Nov 30 2003

Keywords

Crossrefs

Programs

Formula

a(n) = 15*16^(n-1) + 0^n/16.
a(n) = Sum_{j=0..3, Sum_{k=0..n, C(4*n+j, 4*k)}}.
a(n) = (A070775(n) + A090407(n) + A001025(n) + A090408(n))/4.
From Elmo R. Oliveira, Mar 25 2025: (Start)
E.g.f.: (15*exp(16*x) + 1)/16.
a(n) = 16*a(n-1) for n > 1. (End)
Showing 1-3 of 3 results.