cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090448 Fourth column (m=3) of triangle A090447.

Original entry on oeis.org

9, 96, 500, 1800, 5145, 12544, 27216, 54000, 99825, 174240, 290004, 463736, 716625, 1075200, 1572160, 2247264, 3148281, 4332000, 5865300, 7826280, 10305449, 13406976, 17250000, 21970000, 27720225, 34673184, 43022196, 52983000, 64795425, 78725120, 95065344
Offset: 3

Views

Author

Wolfdieter Lang, Dec 23 2003

Keywords

Crossrefs

Programs

  • Maple
    seq(mul(binomial(n,k),k=1..3),n=3..30); # Zerinvary Lajos, Dec 13 2007
  • Mathematica
    a[n_] := Product[Binomial[n, k], {k, 0, 3}]; Array[a, 30, 3] (* Amiram Eldar, Sep 08 2022 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{9,96,500,1800,5145,12544,27216},40] (* Harvey P. Dale, Jul 18 2025 *)

Formula

a(n) = A090447(n,3).
a(n) = (n^3*(n-1)^2*(n-2)^1)/(1!*2!*3!) for n >= 3.
From Colin Barker, Jan 21 2013: (Start)
a(n) = (n^6-4*n^5+5*n^4-2*n^3)/12.
G.f.: -x^3*(x^3+17*x^2+33*x+9)/(x-1)^7. (End)
a(n) = A000330(n-1)^2 - A000292(n-1)^2. - J. M. Bergot, May 02 2014
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Wesley Ivan Hurt, May 04 2021
From Amiram Eldar, Sep 08 2022: (Start)
Sum_{n>=3} 1/a(n) = 207/4 - 9*Pi^2/2 - 6*zeta(3).
Sum_{n>=3} (-1)^(n+1)/a(n) = 165/4 - Pi^2/4 - 48*log(2) - 9*zeta(3)/2. (End)