A090570 Numbers that are congruent to {0, 1} mod 9.
0, 1, 9, 10, 18, 19, 27, 28, 36, 37, 45, 46, 54, 55, 63, 64, 72, 73, 81, 82, 90, 91, 99, 100, 108, 109, 117, 118, 126, 127, 135, 136, 144, 145, 153, 154, 162, 163, 171, 172, 180, 181, 189, 190, 198, 199, 207, 208, 216, 217, 225, 226
Offset: 1
Examples
13 is 1101 in base 2, so a(13+1) = a(14) = 36*1 + 18*1 + 9*0 + 1*1 = 36+18+1 = 55. - _Philippe Deléham_, Oct 17 2011
Links
- David Lovler, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
PARI
forstep(n=0,200,[1,8],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
Formula
a(n) = 9*n - a(n-1) - 17 (with a(1)=0). - Vincenzo Librandi, Nov 16 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 9*n/2 - 25/4 - 7*(-1)^n/4.
G.f.: x^2*(1+8*x)/( (1+x)*(1-x)^2 ). (End)
E.g.f.: 8 + ((18*x - 25)*exp(x) - 7*exp(-x))/4. - David Lovler, Sep 03 2022