A090597 a(n) = - a(n-1) + 5(a(n-2) + a(n-3)) - 2(a(n-4) + a(n-5)) - 8(a(n-6) + a(n-7)).
0, 1, 1, 3, 3, 8, 12, 27, 45, 96, 176, 363, 693, 1408, 2752, 5547, 10965, 22016, 43776, 87723, 174933, 350208, 699392, 1399467, 2796885, 5595136, 11186176, 22375083, 44741973, 89489408
Offset: 3
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 3..1000
- C. Ernst and D. W. Sumners, The Growth of the Number of Prime Knots, Math. Proc. Cambridge Philos. Soc. 102, 303-315, 1987 (see Theorem 5, formulas for TL_n).
- Index entries for linear recurrences with constant coefficients, signature (1,3,-1,0,-2,-4).
Crossrefs
Programs
-
Haskell
a090597 n = a090597_list !! (n-3) a090597_list = [0,1,1,3,3,8,12] ++ zipWith (-) (drop 4 $ zipWith (-) (map (* 5) zs) (drop 2 a090597_list)) (zipWith (+) (drop 2 $ map (* 2) zs) (map (* 8) zs)) where zs = zipWith (+) a090597_list $ tail a090597_list -- Reinhard Zumkeller, Nov 24 2011
-
Mathematica
f[x_] := (x-x^3-2x^4-3x^5) / (1-x-3x^2+x^3+2x^5+4x^6); CoefficientList[ Series[ f[x], {x, 0, 29}], x] (* Jean-François Alcover, Dec 06 2011 *) J[n_] := (2^n - (-1)^n)/3; Table[(J[n - 3] + J[(n - If[OddQ[n], 3, 0])/2])/2 , {n, 3, 31}] (* David Scambler, Dec 13 2011 *) LinearRecurrence[{1,3,-1,0,-2,-4},{0,1,1,3,3,8},30] (* Harvey P. Dale, Nov 12 2013 *)
Formula
a(n) = +a(n-1) +3*a(n-2) -a(n-3) -2*a(n-5) -4*a(n-6). - R. J. Mathar, Nov 23 2011
G.f.: -x^4*(-1+x^2+3*x^4+2*x^3) / ( (2*x-1)*(1+x)*(2*x^2-1)*(1+x^2) ). - R. J. Mathar, Nov 23 2011
a(n) = (J(n-3) + J((n-3)/2))/2 if n is odd; (J(n-3) + J(n/2))/2 if n is even, where J is the Jacobsthal number A001045. - David Scambler, Dec 12 2011
Comments