cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090634 Start with the sequence [1, 1/2, 1/3, ..., 1/n]; form new sequence of n-1 terms by taking averages of successive terms; repeat until reach a single number F(n); a(n) = denominator of F(n).

Original entry on oeis.org

1, 4, 12, 32, 80, 64, 448, 1024, 2304, 5120, 11264, 8192, 53248, 114688, 245760, 524288, 1114112, 262144, 4980736, 2097152, 3145728, 46137344, 96468992, 67108864, 419430400, 872415232, 1811939328, 3758096384, 7784628224, 5368709120, 33285996544, 68719476736
Offset: 1

Views

Author

N. J. A. Sloane, Dec 13 2003

Keywords

Comments

a(n) is the denominator of the resistance of the n-dimensional cube between two adjacent nodes, when the resistance of each edge is 1. See Nedermeyer and Smorodinsky. - Michel Marcus, Sep 13 2019

Examples

			n=3: [1, 1/2, 1/3] -> [3/4, 5/6] -> [7/12], so F(3) = 7/12. Sequence of F(n)'s begins 1, 3/4, 7/12, 15/32, 31/80, 21/64, 127/448, 255/1024, ...
		

Crossrefs

Cf. A090633 (numerators).

Programs

  • Haskell
    import Data.Ratio (denominator, (%))
    a090634 n = denominator z where
       [z] = (until ((== 1) . length) avg) $ map (1 %) [1..n]
       avg xs = zipWith (\x x' -> (x + x') / 2) (tail xs) xs
    -- Reinhard Zumkeller, Dec 08 2011
  • Maple
    a:= n-> denom(coeff(series(2*log((x/2-1)/(x-1)), x, n+1), x, n)):
    seq(a(n), n=1..35);  # Alois P. Heinz, Aug 02 2018
  • Mathematica
    f[s_list] := Table[(s[[k]] + s[[k+1]])/2, {k, 1, Length[s]-1}];
    a[n_] := Nest[f, 1/Range[n], n-1] // First // Denominator;
    Array[a, 40] (* Jean-François Alcover, Aug 02 2018 *)

Formula

a(n) = A131135(n)/2. - Paul Barry, Jun 17 2007
a(n) = denominator(2*(1-1/2^n)/n) (conjectured). - Michel Marcus, Sep 12 2019