A090634 Start with the sequence [1, 1/2, 1/3, ..., 1/n]; form new sequence of n-1 terms by taking averages of successive terms; repeat until reach a single number F(n); a(n) = denominator of F(n).
1, 4, 12, 32, 80, 64, 448, 1024, 2304, 5120, 11264, 8192, 53248, 114688, 245760, 524288, 1114112, 262144, 4980736, 2097152, 3145728, 46137344, 96468992, 67108864, 419430400, 872415232, 1811939328, 3758096384, 7784628224, 5368709120, 33285996544, 68719476736
Offset: 1
Examples
n=3: [1, 1/2, 1/3] -> [3/4, 5/6] -> [7/12], so F(3) = 7/12. Sequence of F(n)'s begins 1, 3/4, 7/12, 15/32, 31/80, 21/64, 127/448, 255/1024, ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..3312 (first 200 terms from T. D. Noe)
- F. Nedermeyer and Y. Smorodinsky, Resistance in the multidimensional cube, Quantum, Sept/October 1996, pp. 12-15 (beware file is 75Mb).
- Putnam Competition, Problem B2, Solutions, 2003.
Crossrefs
Cf. A090633 (numerators).
Programs
-
Haskell
import Data.Ratio (denominator, (%)) a090634 n = denominator z where [z] = (until ((== 1) . length) avg) $ map (1 %) [1..n] avg xs = zipWith (\x x' -> (x + x') / 2) (tail xs) xs -- Reinhard Zumkeller, Dec 08 2011
-
Maple
a:= n-> denom(coeff(series(2*log((x/2-1)/(x-1)), x, n+1), x, n)): seq(a(n), n=1..35); # Alois P. Heinz, Aug 02 2018
-
Mathematica
f[s_list] := Table[(s[[k]] + s[[k+1]])/2, {k, 1, Length[s]-1}]; a[n_] := Nest[f, 1/Range[n], n-1] // First // Denominator; Array[a, 40] (* Jean-François Alcover, Aug 02 2018 *)
Formula
a(n) = A131135(n)/2. - Paul Barry, Jun 17 2007
a(n) = denominator(2*(1-1/2^n)/n) (conjectured). - Michel Marcus, Sep 12 2019
Comments