A090667 Number of compositions of 3n with each part less than or equal to n.
1, 1, 13, 149, 1490, 13624, 117920, 987568, 8111200, 65866496, 531372800, 4270866688, 34254920192, 274425014272, 2197077311488, 17583865032704, 140702055981056, 1125749585477632, 9006563605151744, 72054913990721536, 576449482336632832, 4611638739487686656
Offset: 0
Examples
a(2)=13 since there is one composition of 6 of the form 1+1+1+1+1+1, five of the form 2+1+1+1+1, six of the form 2+2+1+1 and one of the form 2+2+2 and 1+5+6+1=13.
Links
- Index entries for linear recurrences with constant coefficients, signature (22,-188,808,-1856,2176,-1024).
Crossrefs
Cf. A008464.
Programs
-
Maple
A090667:=n->`if`(n=0,1,2^(3*n-1)-(2*n+1)*2^(2*n-2)+(n+2)*(n-1)*2^(n-4)); seq(A090667(n), n=0..50); # Wesley Ivan Hurt, Nov 14 2013
-
Mathematica
LinearRecurrence[{22,-188,808,-1856,2176,-1024},{1,1,13,149,1490,13624,117920},30] (* Harvey P. Dale, May 04 2024 *)
Formula
a(n) = 2^(3n-1)-(2n+1)*2^(2n-2)+(n+2)*(n-1)*2^(n-4), n>0.
G.f.: (896*x^6-1968*x^5+1704*x^4-757*x^3+179*x^2-21*x+1) / ((2*x-1)^3*(4*x-1)^2*(8*x-1)). - Colin Barker, May 15 2013
Extensions
More terms from Colin Barker, May 15 2013