cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090699 Decimal expansion of the Erdos-Szekeres constant zeta(3/2)/zeta(3).

Original entry on oeis.org

2, 1, 7, 3, 2, 5, 4, 3, 1, 2, 5, 1, 9, 5, 5, 4, 1, 3, 8, 2, 3, 7, 0, 8, 9, 8, 4, 0, 4, 3, 8, 2, 2, 3, 7, 2, 2, 9, 0, 6, 7, 1, 1, 3, 2, 9, 1, 3, 1, 6, 6, 0, 8, 5, 6, 7, 4, 9, 1, 7, 5, 7, 5, 8, 9, 6, 7, 0, 5, 9, 6, 6, 1, 7, 2, 6, 6, 4, 4, 4, 6, 8, 2, 0, 3, 7, 8, 5, 7, 2, 7, 8, 3, 8, 3, 1, 7, 6, 5, 1, 0, 2, 6, 6, 4
Offset: 1

Views

Author

Benoit Cloitre, Jan 14 2004

Keywords

Comments

Let N(x) denotes the number of 2-full integers not exceeding x. Then lim_{x->oo} N(x)/sqrt(x) = zeta(3/2)/zeta(3). Also related to Niven's constant.

Examples

			zeta(3/2)/zeta(3) = 2.17325431251955413823708984...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 112-114.

Crossrefs

Cf. A001694 (powerful numbers), A102834 (nonsquare powerful numbers).

Programs

  • Mathematica
    RealDigits[N[Zeta[3/2]/Zeta[3],150]][[1]] (* T. D. Noe, May 03 2006 *)
  • PARI
    zeta(3/2)/zeta(3) \\ Michel Marcus, Oct 06 2017

Formula

Product_{p prime} (1+1/p^(3/2)) = zeta(3/2)/zeta(3). - T. D. Noe, May 03 2006
Equals lim_{n->oo} (Sum_{k=1..n} A051904(k) - n)/sqrt(n) (Niven, 1969). - Amiram Eldar, Jul 11 2020

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 16 2007