cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090709 Primes whose decimal representation is a valid number in base 6 and interpreted as such is again a prime.

Original entry on oeis.org

2, 3, 5, 11, 31, 101, 151, 211, 241, 251, 331, 421, 431, 521, 1021, 1151, 1231, 1321, 2011, 2131, 2311, 2351, 2441, 2531, 2551, 3041, 3221, 3251, 3301, 3541, 4021, 4111, 4201, 4421, 4441, 4451, 5011, 5021, 5101, 5231, 5441, 5531, 10331, 11131, 11311
Offset: 1

Views

Author

Cino Hilliard, Jan 18 2004

Keywords

Examples

			31 is prime in decimal and a valid number in base 6: 31_6 = 19, a prime.
		

Crossrefs

Programs

  • Magma
    [n:n in PrimesUpTo(12000)| Max(Intseq(n,10)) le 5 and IsPrime(Seqint(Intseq(Seqint(Intseq(n),6))))]; // Marius A. Burtea, Jun 30 2019
  • Mathematica
    Select[ FromDigits@# & /@ IntegerDigits[ Prime@ Range@ 270, 6], PrimeQ] (* Robert G. Wilson v, Jan 05 2014 *)
    vn6pQ[n_]:=Module[{idn=IntegerDigits[n]},Max[idn]<6&&PrimeQ[ FromDigits[ idn,6]]]; Select[Prime[Range[1500]],vn6pQ] (* Harvey P. Dale, Jul 10 2015 *)
  • PARI
    fixBase(n, oldBase, newBase)=my(d=digits(n, oldBase), t=newBase-1); for(i=1, #d, if(d[i]>t, for(j=i, #d, d[j]=t); break)); fromdigits(d, newBase)
    list(lim)=my(v=List(), t); forprime(p=2, fixBase(lim\1, 10, 6), if(isprime(t=fromdigits(digits(p, 6), 10)), listput(v, t))); Vec(v) \\ Charles R Greathouse IV, Nov 07 2016
    
  • Python
    from gmpy2 import digits, is_prime
    A090709_list = [n for n in (int(digits(d,6)) for d in range(10**6) if is_prime(d)) if is_prime(n)] # Chai Wah Wu, Apr 09 2016
    

Extensions

Following suggestions by V.J. Pohjola and Donovan Johnson, name, example and offset corrected by M. F. Hasler, Jan 03 2014