cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090739 Exponent of 2 in 9^n - 1.

Original entry on oeis.org

3, 4, 3, 5, 3, 4, 3, 6, 3, 4, 3, 5, 3, 4, 3, 7, 3, 4, 3, 5, 3, 4, 3, 6, 3, 4, 3, 5, 3, 4, 3, 8, 3, 4, 3, 5, 3, 4, 3, 6, 3, 4, 3, 5, 3, 4, 3, 7, 3, 4, 3, 5, 3, 4, 3, 6, 3, 4, 3, 5, 3, 4, 3, 9, 3, 4, 3, 5, 3, 4, 3, 6, 3, 4, 3, 5, 3, 4, 3, 7, 3, 4, 3, 5, 3, 4, 3
Offset: 1

Views

Author

Labos Elemer and Ralf Stephan, Jan 19 2004

Keywords

Comments

The exponent of 2 in the factorization of Fibonacci(6n). - T. D. Noe, Mar 14 2014
Records of 3, 4, 5, 6, 7, 8,.. occur at n= 1, 2, 4, 8, 16, 32,... - R. J. Mathar, Jun 28 2025

Examples

			For n = 2, we see that -1 + 3^4 = 80 = 2^4 * 5 so a(2) = 4.
For n = 3, we see that -1 + 3^6 = 728 = 2^3 * 7 * 13, so a(3) = 3.
		

Crossrefs

Cf. A000005, A006519, A120738 (partial sums).
Appears in A161737.

Programs

  • Maple
    A090739 := proc(n)
        padic[ordp](9^n-1,2) ;
    end proc:
    seq(A090739(n),n=1..80) ; # R. J. Mathar, Jun 28 2025
  • Mathematica
    Table[Part[Flatten[FactorInteger[ -1+3^(2*n)]], 2], {n, 1, 70}]
    Table[IntegerExponent[Fibonacci[n], 2], {n, 6, 600, 6}] (* T. D. Noe, Mar 14 2014 *)
  • PARI
    a(n)=valuation(n,2)+3 \\ Charles R Greathouse IV, Mar 14 2014
    
  • Python
    def A090739(n): return (~n&n-1).bit_length()+3 # Chai Wah Wu, Jul 11 2022

Formula

a(n) = A007814(n) + 3.
a((2*n-1)*2^p) = p + 3, p >= 0. - Johannes W. Meijer, Feb 08 2013
a(n) = log_2(A006519(9^n - 1)). - Alonso del Arte, Feb 08 2013
a(n) = 2*tau(4*n)/(tau(4*n) - tau(n)), where tau(n) = A000005(n). - Peter Bala, Jan 06 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4. - Amiram Eldar, Nov 28 2022

Extensions

More terms from T. D. Noe, Mar 14 2014