cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A292741 Number A(n,k) of partitions of n with k sorts of part 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 2, 1, 4, 10, 11, 5, 2, 1, 5, 17, 31, 24, 7, 4, 1, 6, 26, 69, 95, 50, 11, 4, 1, 7, 37, 131, 278, 287, 104, 15, 7, 1, 8, 50, 223, 657, 1114, 865, 212, 22, 8, 1, 9, 65, 351, 1340, 3287, 4460, 2599, 431, 30, 12, 1, 10, 82, 521, 2459, 8042, 16439, 17844, 7804, 870, 42, 14
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2017

Keywords

Examples

			A(1,3) = 3: 1a, 1b, 1c.
A(2,3) = 10: 2, 1a1a, 1a1b, 1a1c, 1b1a, 1b1b, 1b1c, 1c1a, 1c1b, 1c1c.
A(3,2) = 11: 3, 21a, 21b, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a, 1b1b1b.
Square array A(n,k) begins:
  1,  1,   1,    1,     1,     1,      1,      1, ...
  0,  1,   2,    3,     4,     5,      6,      7, ...
  1,  2,   5,   10,    17,    26,     37,     50, ...
  1,  3,  11,   31,    69,   131,    223,    351, ...
  2,  5,  24,   95,   278,   657,   1340,   2459, ...
  2,  7,  50,  287,  1114,  3287,   8042,  17215, ...
  4, 11, 104,  865,  4460, 16439,  48256, 120509, ...
  4, 15, 212, 2599, 17844, 82199, 289540, 843567, ...
		

Crossrefs

Columns k=0-2 give: A002865, A000041, A090764.
Rows n=0-2 give: A000012, A001477, A002522, A071568.
Main diagonal gives A292462.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i<2, k^n,
          add(b(n-i*j, i-1, k), j=0..iquo(n, i)))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[0, , ] = 1; b[n_, i_, k_] := b[n, i, k] = If[i < 2, k^n, Sum[b[n - i*j, i - 1, k], {j, 0, Quotient[n, i]}]];
    A[n_, k_] := b[n, n, k];
    Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 19 2018, translated from Maple *)

Formula

G.f. of column k: 1/(1-k*x) * 1/Product_{j>=2} (1-x^j).
A(n,k) = Sum_{j=0..n} A002865(j) * k^(n-j).

A259401 a(n) = Sum_{k=0..n} 2^(n-k)*p(k), where p(k) is the partition function A000041.

Original entry on oeis.org

1, 3, 8, 19, 43, 93, 197, 409, 840, 1710, 3462, 6980, 14037, 28175, 56485, 113146, 226523, 453343, 907071, 1814632, 3629891, 7260574, 14522150, 29045555, 58092685, 116187328, 232377092, 464757194, 929518106, 1859040777, 3718087158, 7436181158, 14872370665
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 26 2015

Keywords

Comments

In general, Sum_{k=0..n} (m^(n-k) * p(k)) ~ m^n / QPochhammer[1/m, 1/m], for m > 1.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<0, 0,
          2*a(n-1)+combinat[numbpart](n))
        end:
    seq(a(n), n=0..32);  # Alois P. Heinz, Dec 03 2019
  • Mathematica
    Table[Sum[2^(n-k)*PartitionsP[k],{k,0,n}],{n,0,50}]
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*numbpart(k)); \\ Michel Marcus, Dec 03 2019

Formula

a(n) ~ c * 2^n, where c = 1/A048651 = 1/QPochhammer[1/2, 1/2] = 3.462746619455...
G.f.: (1/(1 - 2*x)) * Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Dec 03 2019

A320733 Number of partitions of n with two sorts of part 1 which are introduced in ascending order.

Original entry on oeis.org

1, 1, 3, 6, 13, 26, 54, 108, 219, 439, 882, 1766, 3539, 7081, 14172, 28351, 56716, 113443, 226908, 453833, 907698, 1815424, 3630893, 7261829, 14523725, 29047513, 58095121, 116190338, 232380810, 464761759, 929523710, 1859047619, 3718095507, 7436191301
Offset: 0

Views

Author

Alois P. Heinz, Oct 20 2018

Keywords

Crossrefs

Column k=2 of A292745.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i<2, add(
          Stirling2(n, j), j=0..2), add(b(n-i*j, i-1), j=0..n/i))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i < 2, Sum[StirlingS2[n, j], {j, 0, 2}], Sum[b[n - i j, i - 1], {j, 0, n/i}]];
    a[n_] := b[n, n];
    a /@ Range[0, 40] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)

Formula

G.f.: ((1 - x)/(1 - 2*x)) * Product_{k>=2} 1/(1 - x^k). - Ilya Gutkovskiy, Dec 03 2019
Showing 1-3 of 3 results.