A090783 a(n) can be expressed as the difference of the squares of consecutive primes in just three distinct ways.
1848, 6888, 14280, 16008, 19152, 36120, 112728, 116832, 129480, 139080, 176520, 190632, 190968, 199752, 216840, 236208, 252120, 274848, 303960, 314160, 340368, 363720, 435792, 458280, 503160, 513240, 686160, 688680, 698880, 712680, 721560
Offset: 1
Keywords
Examples
1848 = 463^2 - 461^2 = 233^2 - 229^2 = 157^2 - 151^2.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 3091 terms from Robert Israel)
Programs
-
Maple
N:= 10^6: # to get all terms <= N V:= Vector(N/4): p:= 3: while p < N/2 do q:= p; p:= nextprime(p); r:= (p^2-q^2)/4; if r <= N/4 then V[r]:= V[r]+1 fi od: map(`*`,select(t -> V[t]=3, [$1..N/4]),4); # Robert Israel, Aug 13 2018
-
PARI
is(n) = my(i=0, v=[]); forprime(p=5, n, v=[precprime(p-1), p]; if(v[2]^2-v[1]^2==n, i++)); i==3 \\ Felix Fröhlich, Aug 13 2018
Extensions
More terms from Ray Chandler, Feb 11 2004