cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090826 Convolution of Catalan and Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 5, 12, 31, 85, 248, 762, 2440, 8064, 27300, 94150, 329462, 1166512, 4170414, 15031771, 54559855, 199236416, 731434971, 2697934577, 9993489968, 37157691565, 138633745173, 518851050388, 1947388942885, 7328186394725
Offset: 0

Views

Author

Antti Karttunen, Dec 20 2003

Keywords

Comments

Also (with a(0)=1 instead of 0): Number of fixed points in range [A014137(n-1)..A014138(n-1)] of permutation A089867/A089868, i.e., the number of n-node binary trees fixed by the corresponding automorphism(s).

Crossrefs

Cf. Catalan numbers: A000108, Fibonacci numbers: A000045.

Programs

  • Haskell
    import Data.List (inits)
    a090826 n = a090826_list !! n
    a090826_list = map (sum . zipWith (*) a000045_list . reverse) $
                       tail $ inits a000108_list
    -- Reinhard Zumkeller, Aug 28 2013
  • Mathematica
    CoefficientList[Series[(1-(1-4x)^(1/2))/(2(1-x-x^2)), {x,0,30}], x]  (* Harvey P. Dale, Apr 05 2011 *)

Formula

G.f.: (1-(1-4x)^(1/2))/(2(1-x-x^2)). The generating function for the convolution of Catalan and Fibonacci numbers is simply the generating functions of the Catalan and Fibonacci numbers multiplied together. - Molly Leonard (maleonard1(AT)stthomas.edu), Aug 04 2006
For n>1, a(n) = a(n-1) + a(n-2) + A000108(n-1). - Gerald McGarvey, Sep 19 2008
Conjecture: n*a(n) + (-5*n+6)*a(n-1) + 3*(n-2)*a(n-2) + 2*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jul 09 2013
a(n) = A139375(n,1) for n > 0. - Reinhard Zumkeller, Aug 28 2013
a(n) ~ 2^(2*n + 2) / (11*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 10 2018