A090832 Numbers k such that p(k), p(k)+6, p(k)+12, p(k)+18 are consecutive primes, where p(k) denotes k-th prime.
54, 271, 464, 682, 709, 821, 829, 1510, 1594, 1726, 1842, 1853, 2009, 2086, 2209, 2600, 2876, 3253, 3303, 5463, 5689, 6252, 6386, 7064, 7438, 7620, 7728, 7918, 8090, 8145, 8229, 8631, 8654, 8828, 9105, 9184, 9243, 9997, 10052, 10074, 10329, 10934, 11257, 11343
Offset: 1
Examples
p(271)=1741: 1741,1747,1753,1759 are consecutive primes,1747=1741+6,1753=1741+12,1759=1741+18
Links
- Zak Seidov, Table of n, a(n) for n = 1..1581
Programs
-
Mathematica
p[n_]:=Prime[n];Select[Range[15000],p[ #+1]-p[ # ]==p[ #+2]-p[ #+1]==p[ #+3]-p[ #+2]==6&] (* Zak Seidov, Mar 05 2006 *) PrimePi[#[[1]]]&/@Select[Partition[Prime[Range[11000]],4,1],Differences[#]=={6,6,6}&] (* Harvey P. Dale, Oct 28 2023 *)
Extensions
Corrected and extended by Zak Seidov, Mar 05 2006