A090843 Number of nodes on a tree with degree 11 interior nodes and degree 1 boundary nodes.
1, 12, 122, 1222, 12222, 122222, 1222222, 12222222, 122222222, 1222222222, 12222222222, 122222222222, 1222222222222, 12222222222222, 122222222222222, 1222222222222222, 12222222222222222, 122222222222222222, 1222222222222222222, 12222222222222222222, 122222222222222222222
Offset: 0
Examples
a(0) = 1; a(1) = 1 + 10 + 1 = 12; a(2) = 1 + 10 + 100 + 10 + 1 = 122; a(3) = 1 + 10 + 100 + 1000 + 100 + 10 + 1 = 1222; etc. - _Philippe Deléham_, Feb 23 2014
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- Li He, Xiangwei Liu, and Gilbert Strang, Trees with Cantor Eigenvalue Distribution, Studies in Applied Mathematics, Vol. 110(2), 2003, pp. 123-138.
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Programs
-
Maple
g:=(1+z)/((1-z)* (1-10*z)): gser:=series(g, z=0, 43): seq((coeff(gser, z, n)), n=0..24); # Zerinvary Lajos, Feb 25 2009
-
Mathematica
Table[(11 10^n - 2)/9, {n, 0, 20}] (* Vincenzo Librandi, Feb 24 2014 *)
Formula
a(n) = (11*10^n - 2)/9.
G.f.: (1+x)/((1-x)*(1-10*x)). - Zerinvary Lajos, Feb 25 2009
From Philippe Deléham, Feb 23 2014: (Start)
a(n) = 10*a(n-1) + 2, a(0) = 1.
a(n) = 11*a(n-1) - 10*a(n-2), a(0) = 1, a(1) = 12.
a(n) = Sum_{k=0..n} A112468(n,k)*11^k. (End)
E.g.f.: exp(x)*(11*exp(9*x) - 2)/9. - Elmo R. Oliveira, May 07 2025
Comments