cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090843 Number of nodes on a tree with degree 11 interior nodes and degree 1 boundary nodes.

Original entry on oeis.org

1, 12, 122, 1222, 12222, 122222, 1222222, 12222222, 122222222, 1222222222, 12222222222, 122222222222, 1222222222222, 12222222222222, 122222222222222, 1222222222222222, 12222222222222222, 122222222222222222, 1222222222222222222, 12222222222222222222, 122222222222222222222
Offset: 0

Views

Author

Paul Barry, Dec 09 2003

Keywords

Comments

Sum of n-th row of triangle of powers of 10: 1; 1 10 1; 1 10 100 10 1; 1 10 100 1000 100 10 1; ... - Philippe Deléham, Feb 23 2014

Examples

			a(0) = 1;
a(1) = 1 + 10 + 1 = 12;
a(2) = 1 + 10 + 100 + 10 + 1 = 122;
a(3) = 1 + 10 + 100 + 1000 + 100 + 10 + 1 = 1222; etc. - _Philippe Deléham_, Feb 23 2014
		

Crossrefs

Programs

  • Maple
    g:=(1+z)/((1-z)* (1-10*z)): gser:=series(g, z=0, 43): seq((coeff(gser, z, n)), n=0..24); # Zerinvary Lajos, Feb 25 2009
  • Mathematica
    Table[(11 10^n - 2)/9, {n, 0, 20}] (* Vincenzo Librandi, Feb 24 2014 *)

Formula

a(n) = (11*10^n - 2)/9.
G.f.: (1+x)/((1-x)*(1-10*x)). - Zerinvary Lajos, Feb 25 2009
From Philippe Deléham, Feb 23 2014: (Start)
a(n) = 10*a(n-1) + 2, a(0) = 1.
a(n) = 11*a(n-1) - 10*a(n-2), a(0) = 1, a(1) = 12.
a(n) = Sum_{k=0..n} A112468(n,k)*11^k. (End)
E.g.f.: exp(x)*(11*exp(9*x) - 2)/9. - Elmo R. Oliveira, May 07 2025