cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A112468 Riordan array (1/(1-x), x/(1+x)).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, -1, 1, 1, 0, 2, -2, 1, 1, 1, -2, 4, -3, 1, 1, 0, 3, -6, 7, -4, 1, 1, 1, -3, 9, -13, 11, -5, 1, 1, 0, 4, -12, 22, -24, 16, -6, 1, 1, 1, -4, 16, -34, 46, -40, 22, -7, 1, 1, 0, 5, -20, 50, -80, 86, -62, 29, -8, 1, 1, 1, -5, 25, -70, 130, -166, 148, -91, 37, -9, 1, 1, 0, 6, -30, 95, -200, 296, -314, 239, -128, 46, -10, 1
Offset: 0

Views

Author

Paul Barry, Sep 06 2005

Keywords

Comments

Row sums are A040000. Diagonal sums are A112469. Inverse is A112467. Row sums of k-th power are 1, k+1, k+1, k+1, .... Note that C(n,k) = Sum_{j=0..n-k} C(n-j-1, n-k-j).
Equals row reversal of triangle A112555 up to sign, where log(A112555) = A112555 - I. Unsigned row sums equals A052953 (Jacobsthal numbers + 1). Central terms of even-indexed rows are a signed version of A072547. Sums of squared terms in rows yields A112556, which equals the first differences of the unsigned central terms. - Paul D. Hanna, Jan 20 2006
Sum_{k=0..n} T(n,k)*x^k = A000012(n), A040000(n), A005408(n), A033484(n), A048473(n), A020989(n), A057651(n), A061801(n), A238275(n), A238276(n), A138894(n), A090843(n), A199023(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively (see the square array in A112739). - Philippe Deléham, Feb 22 2014

Examples

			Triangle starts
  1;
  1,  1;
  1,  0,  1;
  1,  1, -1,  1;
  1,  0,  2, -2,  1;
  1,  1, -2,  4, -3,  1;
  1,  0,  3, -6,  7, -4,  1;
Matrix log begins:
  0;
  1,  0;
  1,  0,  0;
  1,  1, -1,  0;
  1,  1,  1, -2,  0;
  1,  1,  1,  1, -3,  0; ...
Production matrix begins
  1,  1,
  0, -1,  1,
  0,  0, -1,  1,
  0,  0,  0, -1,  1,
  0,  0,  0,  0, -1,  1,
  0,  0,  0,  0,  0, -1,  1,
  0,  0,  0,  0,  0,  0, -1,  1.
- _Paul Barry_, Apr 08 2011
		

Crossrefs

Cf. A174294, A174295, A174296, A174297. - Mats Granvik, Mar 15 2010
Cf. A072547 (central terms), A112555 (reversed rows), A112465, A052953, A112556, A112739, A119258.
See A279006 for another version.

Programs

  • GAP
    T:= function(n,k)
        if k=0 or k=n then return 1;
        else return T(n-1,k-1) - T(n-1,k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 13 2019
  • Haskell
    a112468 n k = a112468_tabl !! n !! k
    a112468_row n = a112468_tabl !! n
    a112468_tabl = iterate (\xs -> zipWith (-) ([2] ++ xs) (xs ++ [0])) [1]
    -- Reinhard Zumkeller, Jan 03 2014
    
  • Magma
    function T(n,k)
      if k eq 0 or k eq n then return 1;
      else return T(n-1,k-1) - T(n-1,k);
      end if;
      return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 13 2019
    
  • Maple
    T := (n,k,m) -> (1-m)^(-n+k)-m^(k+1)*pochhammer(n-k,k+1)*hypergeom( [1,n+1],[k+2],m)/(k+1)!; A112468 := (n,k) -> T(n,n-k,-1);
    seq(print(seq(simplify(A112468(n,k)),k=0..n)),n=0..10); # Peter Luschny, Jul 25 2014
  • Mathematica
    T[n_, 0] = 1; T[n_, n_] = 1; T[n_, k_ ]:= T[n, k] = T[n-1, k-1] - T[n-1, k]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    {T(n,k)=local(m=1,x=X+X*O(X^n),y=Y+Y*O(Y^k)); polcoeff(polcoeff((1+(m-1)*x)*(1+m*x)/(1+m*x-x*y)/(1-x),n,X),k,Y)} \\ Paul D. Hanna, Jan 20 2006
    
  • PARI
    T(n,k) = if(k==0 || k==n, 1, T(n-1, k-1) - T(n-1, k)); \\ G. C. Greubel, Nov 13 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or n<0): return 0
        elif (k==0 or k==n): return 1
        else: return T(n-1, k-1) - T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 13 2019
    

Formula

Triangle T(n,k) read by rows: T(n,0)=1, T(n,k) = T(n-1,k-1) - T(n-1,k). - Mats Granvik, Mar 15 2010
Number triangle T(n, k)= Sum_{j=0..n-k} C(n-j-1, n-k-j)*(-1)^(n-k-j).
G.f. of matrix power T^m: (1+(m-1)*x)*(1+m*x)/(1+m*x-x*y)/(1-x). G.f. of matrix log: x*(1-2*x*y+x^2*y)/(1-x*y)^2/(1-x). - Paul D. Hanna, Jan 20 2006
T(n, k) = R(n,n-k,-1) where R(n,k,m) = (1-m)^(-n+k)-m^(k+1)*Pochhammer(n-k,k+1)*hyper2F1([1,n+1],[k+2],m)/(k+1)!. - Peter Luschny, Jul 25 2014

A246057 a(n) = (5*10^n - 2)/3.

Original entry on oeis.org

1, 16, 166, 1666, 16666, 166666, 1666666, 16666666, 166666666, 1666666666, 16666666666, 166666666666, 1666666666666, 16666666666666, 166666666666666, 1666666666666666, 16666666666666666, 166666666666666666, 1666666666666666666, 16666666666666666666, 166666666666666666666
Offset: 0

Views

Author

Vincenzo Librandi, Aug 13 2014

Keywords

Comments

a(k-1) = (10^k - 4)/6, together with b(k) = 3*a(k-1) + 2 = A093143(k) and c(k) = 2*a(k-1) + 1 = A002277(k) are k-digit numbers for k >= 1 satisfying the so-called curious cubic identity a(k-1)^3 + b(k)^3 + c(k)^3 = a(k)*10^(2*k) + b(k)*10^k + c(k) (concatenated a(k)b(k)c(k)). This k-family and the proof of the identity has been given in the introduction of the van der Poorten reference. Thanks go to S. Heinemeyer for bringing these identities to my attention. - Wolfdieter Lang, Feb 07 2017

Examples

			Curious cubic identities (see a comment and reference above): 1^3 + 5^3 + 3^3 = 153, 16^3 + 50^3 + 33^3 = 165033, 166^3 + 500^3 + 333^3 = 166500333, ... - _Wolfdieter Lang_, Feb 07 2017
		

Crossrefs

Cf. sequences with terms of the form 1k..k where the digit k is repeated n times: A000042 (k=1), A090843 (k=2), A097166 (k=3), A099914 (k=4), A099915 (k=5), this sequence (k=6), A246058 (k=7), A246059 (k=8), A067272 (k=9).

Programs

  • Magma
    [(5*10^n-2)/3: n in [0..20]];
    
  • Mathematica
    Table[(5 10^n - 2)/3, {n, 0, 20}]
  • PARI
    vector(50, n, (5*10^(n-1)-2)/3) \\ Derek Orr, Aug 13 2014

Formula

G.f.: (1 + 5*x)/((1 - x)*(1 - 10*x)).
a(n) = 11*a(n-1) - 10*a(n-2).
E.g.f.: exp(x)*(5*exp(9*x) - 2)/3. - Stefano Spezia, May 02 2025
a(n) = A323639(n+1)/2 = A086948(n+1)/12. - Elmo R. Oliveira, May 07 2025

A112739 Array counting nodes in rooted trees of height n in which the root and internal nodes have valency k (and the leaf nodes have valency one).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 5, 2, 1, 1, 5, 10, 7, 2, 1, 1, 6, 17, 22, 9, 2, 1, 1, 7, 26, 53, 46, 11, 2, 1, 1, 8, 37, 106, 161, 94, 13, 2, 1, 1, 9, 50, 187, 426, 485, 190, 15, 2, 1, 1, 10, 65, 302, 937, 1706, 1457, 382, 17, 2, 1, 1, 11, 82, 457, 1814, 4687, 6826, 4373, 766, 19
Offset: 0

Views

Author

Paul Barry, Sep 16 2005

Keywords

Comments

Rows of the square array have g.f. (1+x)/((1-x)(1-kx)). They are the partial sums of the coordination sequences for the infinite tree of valency k. Row sums are A112740.
Rows of the square array are successively: A000012, A040000, A005408, A033484, A048473, A020989, A057651, A061801, A238275, A238276, A138894, A090843, A199023. - Philippe Deléham, Feb 22 2014

Examples

			As a square array, rows begin
1,1,1,1,1,1,... (A000012)
1,2,2,2,2,2,... (A040000)
1,3,5,7,9,11,... (A005408)
1,4,10,22,46,94,... (A033484)
1,5,17,53,161,485,... (A048473)
1,6,26,106,426,1706,... (A020989)
1,7,37,187,937,4687,... (A057651)
1,8,50,302,1814,10886,... (A061801)
As a number triangle, rows start
1;
1,1;
1,2,1;
1,3,2,1;
1,4,5,2,1;
1,5,10,7,2,1;
		

References

  • L. He, X. Liu and G. Strang, (2003) Trees with Cantor Eigenvalue Distribution. Studies in Applied Mathematics 110 (2), 123-138.
  • L. He, X. Liu and G. Strang, Laplacian eigenvalues of growing trees, Proc. Conf. on Math. Theory of Networks and Systems, Perpignan (2000).

Crossrefs

Formula

As a square array read by antidiagonals, T(n, k)=sum{j=0..k, (2-0^j)*(n-1)^(k-j)}; T(n, k)=(n(n-1)^k-2)/(n-2), n<>2, T(2, n)=2n+1; T(n, k)=sum{j=0..k, (n(n-1)^j-0^j)/(n-1)}, j<>1. As a triangle read by rows, T(n, k)=if(k<=n, sum{j=0..k, (2-0^j)*(n-k-1)^(k-j)}, 0).

A349194 a(n) is the product of the sum of the first i digits of n, as i goes from 1 to the total number of digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 49, 56, 63, 70, 77
Offset: 1

Views

Author

Malo David, Nov 10 2021

Keywords

Comments

The only primes in the sequence are 2, 3, 5 and 7. - Bernard Schott, Nov 23 2021

Examples

			For n=256, a(256) = 2*(2+5)*(2+5+6) = 182.
		

Crossrefs

Cf. A055642, A284001 (binary analog), A349190 (fixed points).
Cf. A007953 (sum of digits), A059995 (floor(n/10)).
Cf. A349278 (similar, with the last digits).

Programs

  • Magma
    f:=func; [f(n):n in [1..100]]; // Marius A. Burtea, Nov 23 2021
  • Mathematica
    Table[Product[Sum[Part[IntegerDigits[n],j],{j,i}],{i,Length[IntegerDigits[n]]}],{n,74}] (* Stefano Spezia, Nov 10 2021 *)
  • PARI
    a(n) = my(d=digits(n)); prod(i=1, #d, sum(j=1, i, d[j])); \\ Michel Marcus, Nov 10 2021
    
  • PARI
    first(n)=if(n<9,return([1..n])); my(v=vector(n)); for(i=1,9,v[i]=i); for(i=10,n, v[i]=sumdigits(i)*v[i\10]); v \\ Charles R Greathouse IV, Dec 04 2021
    
  • Python
    from math import prod
    from itertools import accumulate
    def a(n): return prod(accumulate(map(int, str(n))))
    print([a(n) for n in range(1, 100)]) # Michael S. Branicky, Nov 10 2021
    

Formula

For n>10: a(n) = a(A059995(n))*A007953(n) where A059995(n) = floor(n/10).
In particular, for n<100: a(n) = floor(n/10)*A007953(n)
From Bernard Schott, Nov 23 2021: (Start)
a(n) = 1 iff n = 10^k, k >= 0 (A011557).
a(n) = 2 iff n = 10^k + 1, k >= 0 (A000533 \ {1}).
a(n) = 3 iff n = 10^k + 2, k >= 0 (A133384).
a(n) = 5 iff n = 10^k + 4, k >= 0.
a(n) = 7 iff n = 10^k + 6, k >= 0. (End)
From Marius A. Burtea, Nov 23 2021: (Start)
a(A002275(n)) = n! = A000142(n), n >= 1.
a(A090843(n - 1)) = (2*n - 1)!! = A001147(n), n >= 1.
a(A097166(n)) = (3*n - 2)!!! = A007559(n).
a(A093136(n)) = 2^n = A000079(n).
a(A093138(n)) = 3^n = A000244(n). (End)

A137233 Number of n-digit even numbers.

Original entry on oeis.org

5, 45, 450, 4500, 45000, 450000, 4500000, 45000000, 450000000, 4500000000, 45000000000, 450000000000, 4500000000000, 45000000000000, 450000000000000, 4500000000000000, 45000000000000000, 450000000000000000, 4500000000000000000, 45000000000000000000, 450000000000000000000
Offset: 1

Views

Author

Ctibor O. Zizka, Mar 08 2008

Keywords

Comments

From Kival Ngaokrajang, Oct 18 2013: (Start)
a(n) is also the total number of double rows identified numbers in n digit.
For example:
n = 1: 01 23 45 67 89 = 5 double rows;
n = 2: 1011 1213 1415 1617 1819...9899 = 45 double rows;
n = 3: 100101 102103 104105...998999 = 450 double rows;
The number of double rows is also A030656. (End)
a(n) is also the number of n-digit integers with an even number of even digits (A356929); a(5) = 45000 is the answer to the question 2 of the Olympiade Mathématique Belge in 2004 (link). - Bernard Schott, Sep 06 2022
a(n) is also the number of n-digit integers with an odd number of odd digits (A054684). - Bernard Schott, Nov 07 2022

Examples

			a(2) = 45 because there are 45 2-digit even numbers.
		

Crossrefs

Programs

Formula

a(n) = 9*10^(n-1)/2 if n > 1. - R. J. Mathar, May 23 2008
From Elmo R. Oliveira, Jul 23 2025: (Start)
G.f.: 5*x*(1-x)/(1-10*x).
E.g.f.: (-9 + 10*x + 9*exp(10*x))/20.
a(n) = 10*a(n-1) for n > 2.
a(n) = A052268(n)/2 for n >= 2. (End)

Extensions

Corrected and extended by R. J. Mathar, May 23 2008
More terms from Elmo R. Oliveira, Jul 23 2025

A238275 a(n) = (4*7^n - 1)/3.

Original entry on oeis.org

1, 9, 65, 457, 3201, 22409, 156865, 1098057, 7686401, 53804809, 376633665, 2636435657, 18455049601, 129185347209, 904297430465, 6330082013257, 44310574092801, 310174018649609, 2171218130547265, 15198526913830857, 106389688396816001, 744727818777712009
Offset: 0

Views

Author

Philippe Deléham, Feb 21 2014

Keywords

Comments

Sum of n-th row of triangle of powers of 7: 1; 1 7 1; 1 7 49 7 1; 1 7 49 343 49 7 1; ...
Number of cubes in the crystal structure cubic carbon CCC(n+1), defined in the Baig et al. and in the Gao et al. references. - Emeric Deutsch, May 28 2018

Examples

			a(0) = 1;
a(1) = 1 + 7 + 1 = 9;
a(2) = 1 + 7 + 49 + 7 + 1 = 65;
a(3) = 1 + 7 + 49 + 343 + 49 + 7 + 1 = 457; etc.
		

Crossrefs

Cf. Similar sequences: A151575, A000012, A040000, A005408, A033484, A048473, A020989, A057651, A061801, this sequence, A238276, A138894, A090843, A199023.

Programs

Formula

G.f.: (1+x)/((1-x)*(1-7*x)).
a(n) = 7*a(n-1) + 2, a(0) = 1.
a(n) = 8*a(n-1) - 7*a(n-2), a(0) = 1, a(1) = 9.
a(n) = Sum_{k=0..n} A112468(n,k)*8^k.
E.g.f.: exp(x)*(4*exp(6*x) - 1)/3. - Stefano Spezia, Feb 12 2025

A238276 a(n) = (9*8^n - 2)/7.

Original entry on oeis.org

1, 10, 82, 658, 5266, 42130, 337042, 2696338, 21570706, 172565650, 1380525202, 11044201618, 88353612946, 706828903570, 5654631228562, 45237049828498, 361896398627986, 2895171189023890, 23161369512191122, 185290956097528978, 1482327648780231826
Offset: 0

Views

Author

Philippe Deléham, Feb 21 2014

Keywords

Comments

Sum of n-th row of triangle of powers of 8: 1; 1 8 1; 1 8 64 8 1; 1 8 64 512 64 8 1; ...

Examples

			a(0) = 1;
a(1) = 1 + 8 + 1 = 10;
a(2) = 1 + 8 + 64 + 8 + 1 = 82;
a(3) = 1 + 8 + 64 + 512 + 64 + 8 + 1 = 658; etc.
		

Crossrefs

Cf. Similar sequences: A151575, A000012, A040000, A005408, A033484, A048473, A020989, A057651, A061801, A238275, this sequence, A138894, A090843, A199023.

Programs

Formula

G.f.: (1+x)/((1-x)*(1-8*x)).
a(n) = 8*a(n-1) + 2, a(0) = 1.
a(n) = 9*a(n-1) - 8*a(n-2), a(0) = 1, a(1) = 10.
a(n) = Sum_{k=0..n} A112468(n,k)*9^k.

Extensions

Corrected by Vincenzo Librandi, Feb 23 2014

A045878 Numbers k such that rotating digits of k^2 left once still yields a square.

Original entry on oeis.org

1, 2, 3, 12, 14, 25, 108, 122, 216, 310, 1222, 2028, 2527, 3042, 11802, 12222, 13704, 24865, 25185, 26053, 30494, 122222, 208148, 247137, 312222, 1125786, 1222222, 1325080, 2084388, 2551071, 3025794, 3037736, 3126582, 10716846, 10787208
Offset: 1

Views

Author

Keywords

Comments

Squares resulting in leading zeros are excluded.
A090843 is a subsequence. - Chai Wah Wu, Apr 23 2022

Examples

			11303148^2 = {1}27761154709904 -> 277611547099041{1} = 16661679^2.
		

Crossrefs

Programs

  • Mathematica
    rlsQ[n_]:=Module[{idnrl=RotateLeft[IntegerDigits[n^2]]},First[idnrl]>0 && IntegerQ[Sqrt[FromDigits[idnrl]]]]; Select[Range[11000000],rlsQ] (* Harvey P. Dale, Nov 03 2013 *)
  • Python
    from itertools import count, islice
    from sympy.solvers.diophantine.diophantine import diop_DN
    def A045878_gen(): # generator of terms
        for l in count(0):
            l1, l2 = 10**(l+1), 10**l
            yield from sorted(set(abs(y) for z in (diop_DN(10,m*(1-l1)) for m in range(10)) for x, y in z if l1 >= x**2 >= l2))
    A045878_list = list(islice(A045878_gen(), 30)) # Chai Wah Wu, Apr 23 2022

Extensions

More terms from Patrick De Geest, Nov 15 1998

A238303 Triangle T(n,k), 0<=k<=n, read by rows given by T(n,0) = 1, T(n,k) = 2 if k>0.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Philippe Deléham, Feb 24 2014

Keywords

Comments

Row sums are A005408(n).
Diagonals sums are A109613(n).
Sum_{k=0..n} T(n,k)*x^k = A033999(n), A000012(n), A005408(n), A036563(n+2), A058481(n+1), A083584(n), A137410(n), A233325(n), A233326(n), A233328(n), A211866(n+1), A165402(n+1) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A151575(n), A000012(n), A040000(n), A005408(n), A033484(n), A048473(n), A020989(n), A057651(n), A061801(n), A238275(n), A238276(n), A138894(n), A090843(n), A199023(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively.
Sum_{k=0..n} T(n,k)^x = A000027(n+1), A005408(n), A016813(n), A017077(n) for x = 0, 1, 2, 3 respectively.
Sum_{k=0..n} k*T(n,k) = A002378(n).
Sum_{k=0..n} A000045(k)*T(n,k) = A019274(n+2).
Sum_{k=0..n} A000142(k)*T(n,k) = A066237(n+1).

Examples

			Triangle begins:
1;
1, 2;
1, 2, 2;
1, 2, 2, 2;
1, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2;
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2;
...
		

Crossrefs

Cf. Diagonals: A040000.
Cf. Columns: A000012, A007395.
First differences of A001614.

Programs

Formula

T(n,0) = A000012(n) = 1, T(n+k,k) = A007395(n) = 2 for k>0.

Extensions

Data section extended to a(104) by Antti Karttunen, Jan 19 2025

A090842 Square array of numbers read by antidiagonals where T(n,k) = ((k+3)*(k+2)^n-2)/(k+1).

Original entry on oeis.org

1, 1, 4, 1, 5, 10, 1, 6, 17, 22, 1, 7, 26, 53, 46, 1, 8, 37, 106, 161, 94, 1, 9, 50, 187, 426, 485, 190, 1, 10, 65, 302, 937, 1706, 1457, 382, 1, 11, 82, 457, 1814, 4687, 6826, 4373, 766, 1, 12, 101, 658, 3201, 10886, 23437, 27306, 13121, 1534, 1, 13, 122, 911, 5266
Offset: 0

Views

Author

Paul Barry, Dec 09 2003

Keywords

Comments

Nodes on a tree with degree k interior nodes and degree 1 boundary nodes.

Examples

			Rows begin:
  1 4 10 22 ...
  1 5 17 53 ...
  1 6 26 106 ...
  1 7 37 187 ...
		

Crossrefs

Formula

The total number of nodes on a tree with degree k interior nodes and degree 1 boundary nodes is given by N(k, r) = (k*(k-1)^r-2)/(k-2).
G.f.: Sum_{k>=0} (1+x*y)/(1-x*y)/(1-(k+2)*x*y)*y^k. - Vladeta Jovovic, Dec 12 2003
Showing 1-10 of 12 results. Next