cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A119656 Denominator of BernoulliB(4*prime(n))/30.

Original entry on oeis.org

1, 91, 11, 29, 23, 53, 1, 1, 47, 59, 1, 149, 83, 173, 1, 107, 1, 1, 269, 1, 293, 317, 167, 179, 389, 1, 1, 1, 1, 227, 509, 263, 1, 557, 1, 1, 1, 653, 1, 347, 359, 1, 383, 773, 1, 797, 1, 1, 1, 1, 467, 479, 1, 503, 1, 1, 1, 1, 1109, 563, 1, 587, 1229, 1, 1, 1, 1, 1, 1, 1, 1, 719
Offset: 1

Views

Author

Alexander Adamchuk, Jul 28 2006

Keywords

Comments

The only composite in this sequence is a(2) = 91 = 7*13. All other a(n) are equal to 1 (for n = 1,7,8,11,15,17,18,20,26,27,28,29,33,35,36,37,39,...) or primes from A090865. Each prime from A090865 (excluding 7 and 13) appears only once in {a(n)}. The primes in {a(n)} also appear to form a subset of A103203.

Crossrefs

Programs

  • Magma
    [Denominator(Bernoulli(4*NthPrime(n)))/30: n in [1..80]]; // G. C. Greubel, Feb 10 2019
    
  • Mathematica
    Table[Denominator[BernoulliB[4Prime[n]]]/30,{n,1,80}]
  • PARI
    {a(n) = denominator(bernfrac(4*prime(n)))/30};
    vector(80, n, a(n)) \\ G. C. Greubel and Michel Marcus, Feb 10 2019
    
  • Sage
    [denominator(bernoulli(4*nth_prime(n)))/30 for n in (1..80)] # G. C. Greubel, Feb 10 2019

Formula

a(n) = denominator(BernoulliB(4*prime(n)))/30.
Showing 1-1 of 1 results.