A090866 Primes p == 1 (mod 4) such that (p-1)/4 is prime.
13, 29, 53, 149, 173, 269, 293, 317, 389, 509, 557, 653, 773, 797, 1109, 1229, 1493, 1637, 1733, 1949, 1997, 2309, 2477, 2693, 2837, 2909, 2957, 3413, 3533, 3677, 3989, 4133, 4157, 4253, 4349, 4373, 4493, 4517, 5189, 5309, 5693, 5717, 5813, 6173, 6197
Offset: 1
Keywords
References
- Albert H. Beiler: Recreations in the theory of numbers. New York: Dover, (2nd ed.) 1966, p. 102, nr. 5.
- P. L. Chebyshev, Theory of congruences. Elements of number theory, Chelsea, 1972, p. 306.
Links
Programs
-
Magma
f:=[n: n in [1..2000] | IsPrime(n) and IsPrime(4*n+1)]; [4*f[n] + 1: n in [1..50]]; // G. C. Greubel, Feb 08 2019
-
Mathematica
Select[Prime[Range[1000]], Mod[#, 4]==1 && PrimeQ[(#-1)/4] &] (* G. C. Greubel, Feb 08 2019 *)
-
PARI
isok(p) = isprime(p) && !frac(q=(p-1)/4) && isprime(q); \\ Michel Marcus, Feb 09 2019
Formula
a(n) = 4*A023212(n) + 1.
Comments