A090878 Numerator of Integral_{x=0..infinity} exp(-x)*(1+x/n)^n dx.
2, 5, 26, 103, 2194, 1223, 472730, 556403, 21323986, 7281587, 125858034202, 180451625, 121437725363954, 595953719897, 26649932810926, 3211211914492699, 285050975993898158530, 549689343118061, 640611888918574971191834
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..250
- Helmut Prodinger, An identity conjectured by Lacasse via the tree function, Electronic Journal of Combinatorics, 20(3) (2013), #P7.
- Eric Weisstein, Exponential Sum Function
Programs
-
Magma
[Numerator((&+[Binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k): k in [0..n]])): n in [1..20]]; // G. C. Greubel, Feb 08 2019
-
Mathematica
f[n_]:= Integrate[E^(-x)*(1+x/n)^n, {x,0,Infinity}]; Table[Numerator[ f[n]], {n, 1, 20}] Table[Numerator[1 + Sum[If[k==0,1,Binomial[n,k]*(k/n)^k*((n-k)/n)^(n-k)], {k,0,n-1}]], {n,1,20}] (* G. C. Greubel, Feb 08 2019 *)
-
PARI
vector(20, n, numerator(sum(k=0, n, binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k)))) \\ G. C. Greubel, Feb 08 2019
-
Sage
[numerator(sum(binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k) for k in (0..n))) for n in (1..20)] # G. C. Greubel, Feb 08 2019
Formula
Extensions
Definition corrected by Gerald McGarvey, Apr 17 2008
Comments