A090885 Sum of the squares of the exponents in the prime factorization of n.
0, 1, 1, 4, 1, 2, 1, 9, 4, 2, 1, 5, 1, 2, 2, 16, 1, 5, 1, 5, 2, 2, 1, 10, 4, 2, 9, 5, 1, 3, 1, 25, 2, 2, 2, 8, 1, 2, 2, 10, 1, 3, 1, 5, 5, 2, 1, 17, 4, 5, 2, 5, 1, 10, 2, 10, 2, 2, 1, 6, 1, 2, 5, 36, 2, 3, 1, 5, 2, 3, 1, 13, 1, 2, 5, 5, 2, 3, 1, 17, 16, 2, 1, 6, 2, 2, 2, 10, 1, 6, 2, 5, 2, 2, 2, 26, 1, 5, 5, 8
Offset: 1
References
- József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter V, p. 155.
Links
- Daniel Forgues, Table of n, a(n) for n = 1..100000
- R. L. Duncan, A class of additive arithmetical functions, The American Mathematical Monthly, Vol. 69, No. 1 (1962), pp. 34-36.
- Alfréd Rényi and Pál Turán, On a theorem of Erdös-Kac, Acta Arithmetica 4.1 (1958), pp. 71-84.
Programs
-
Mathematica
Join[{0},Table[Total[FactorInteger[n][[All,2]]^2],{n,2,100}]] (* Harvey P. Dale, Apr 25 2020 *)
-
PARI
a(n,f=factor(n))=norml2(f[,2]) \\ Charles R Greathouse IV, Mar 09 2021
Formula
Additive with a(p^e) = e^2.
Sum_{k=1..n} a(k) ~ n * log(log(n)) + B_2 * n + O(n/log(n)), where B_2 = gamma + Sum_{p prime} ((1-1/p)*Sum_{m>=1} m^2/p^m + log(1-1/p)), and gamma is Euler's constant (Duncan, 1962). - Amiram Eldar, Mar 05 2021
Extensions
More terms from Ray Chandler, Dec 20 2003
Comments